Advancing Parkinson's Disease Progression Prediction: Comparing Long Short-Term Memory Networks and Kolmogorov-Arnold Networks
- URL: http://arxiv.org/abs/2412.20744v1
- Date: Mon, 30 Dec 2024 06:36:05 GMT
- Title: Advancing Parkinson's Disease Progression Prediction: Comparing Long Short-Term Memory Networks and Kolmogorov-Arnold Networks
- Authors: Abhinav Roy, Bhavesh Gyanchandani, Aditya Oza, Abhishek Sharma,
- Abstract summary: Parkinson's Disease (PD) is a degenerative neurological disorder that impairs motor and non-motor functions.
Current diagnostic methods, however, are often costly, time-consuming, and require specialized equipment and expertise.
This work proposes an innovative approach to predicting PD progression using regression methods, Long Short-Term Memory (LSTM) networks, and Kolmogorov Arnold Networks (KAN)
- Score: 1.9022387674252539
- License:
- Abstract: Parkinson's Disease (PD) is a degenerative neurological disorder that impairs motor and non-motor functions, significantly reducing quality of life and increasing mortality risk. Early and accurate detection of PD progression is vital for effective management and improved patient outcomes. Current diagnostic methods, however, are often costly, time-consuming, and require specialized equipment and expertise. This work proposes an innovative approach to predicting PD progression using regression methods, Long Short-Term Memory (LSTM) networks, and Kolmogorov Arnold Networks (KAN). KAN, utilizing spline-parametrized univariate functions, allows for dynamic learning of activation patterns, unlike traditional linear models. The Movement Disorder Society-Sponsored Revision of the Unified Parkinson's Disease Rating Scale (MDS-UPDRS) is a comprehensive tool for evaluating PD symptoms and is commonly used to measure disease progression. Additionally, protein or peptide abnormalities are linked to PD onset and progression. Identifying these associations can aid in predicting disease progression and understanding molecular changes. Comparing multiple models, including LSTM and KAN, this study aims to identify the method that delivers the highest metrics. The analysis reveals that KAN, with its dynamic learning capabilities, outperforms other approaches in predicting PD progression. This research highlights the potential of AI and machine learning in healthcare, paving the way for advanced computational models to enhance clinical predictions and improve patient care and treatment strategies in PD management.
Related papers
- Parkinson's Disease Diagnosis Through Deep Learning: A Novel LSTM-Based Approach for Freezing of Gait Detection [1.7581090221681177]
This paper introduces a novel deep learning architecture based on the LSTM network for automatically detecting freezing of gait episodes in Parkinson's disease patients.
The results indicate that our proposed approach surpasses current state-of-the-art models in FOG episode detection, achieving an accuracy of 97.71%, precision of 98%, and specificity of 96%.
arXiv Detail & Related papers (2024-12-09T17:58:24Z) - MINDSETS: Multi-omics Integration with Neuroimaging for Dementia Subtyping and Effective Temporal Study [0.7751705157998379]
Alzheimer's disease (AD) and vascular dementia (VaD) are the two most prevalent dementia types.
This paper presents an innovative multi-omics approach to accurately differentiate AD from VaD, achieving a diagnostic accuracy of 89.25%.
arXiv Detail & Related papers (2024-11-06T10:13:28Z) - Machine Learning for ALSFRS-R Score Prediction: Making Sense of the Sensor Data [44.99833362998488]
Amyotrophic Lateral Sclerosis (ALS) is a rapidly progressive neurodegenerative disease that presents individuals with limited treatment options.
The present investigation, spearheaded by the iDPP@CLEF 2024 challenge, focuses on utilizing sensor-derived data obtained through an app.
arXiv Detail & Related papers (2024-07-10T19:17:23Z) - Augmented Risk Prediction for the Onset of Alzheimer's Disease from Electronic Health Records with Large Language Models [42.676566166835585]
Alzheimer's disease (AD) is the fifth-leading cause of death among Americans aged 65 and older.
Recent advancements in large language models (LLMs) offer strong potential for enhancing risk prediction.
This paper proposes a novel pipeline that augments risk prediction by leveraging the few-shot inference power of LLMs.
arXiv Detail & Related papers (2024-05-26T03:05:10Z) - Predicting Parkinson's disease evolution using deep learning [1.4610685586329806]
Parkinson's disease is a neurological condition that occurs in nearly 1% of the world's population.
There is not a single blood test or biomarker available to diagnose Parkinson's disease.
No AI tools have been designed to identify the stage of progression.
arXiv Detail & Related papers (2023-12-28T10:30:54Z) - Automatic diagnosis of knee osteoarthritis severity using Swin
transformer [55.01037422579516]
Knee osteoarthritis (KOA) is a widespread condition that can cause chronic pain and stiffness in the knee joint.
We propose an automated approach that employs the Swin Transformer to predict the severity of KOA.
arXiv Detail & Related papers (2023-07-10T09:49:30Z) - Parkinsons Disease Detection via Resting-State Electroencephalography
Using Signal Processing and Machine Learning Techniques [0.0]
Parkinsons Disease (PD) is a neurodegenerative disorder resulting in motor deficits due to advancing degeneration of dopaminergic neurons.
EEG indicates abnormalities in PD patients.
One major challenge is the lack of a consistent, accurate, and systemic biomarker for PD in order to closely monitor the disease with therapeutic treatments and medication.
arXiv Detail & Related papers (2023-03-29T06:03:05Z) - Early Disease Stage Characterization in Parkinson's Disease from
Resting-state fMRI Data Using a Long Short-term Memory Network [6.487961959149217]
Parkinson's disease (PD) is a common and complex neurodegenerative disorder with 5 stages in the Hoehn and Yahr scaling.
It is challenging to classify early stages 1 and 2 and detect brain function alterations.
We propose the use of a long short-term memory (LSTM) network to characterize the early stages of PD.
arXiv Detail & Related papers (2022-02-11T18:34:11Z) - Learning-based Computer-aided Prescription Model for Parkinson's
Disease: A Data-driven Perspective [61.70045118068213]
We build a dataset by collecting symptoms of PD patients, and their prescription drug provided by neurologists.
Then, we build a novel computer-aided prescription model by learning the relation between observed symptoms and prescription drug.
For the new coming patients, we could recommend (predict) suitable prescription drug on their observed symptoms by our prescription model.
arXiv Detail & Related papers (2020-07-31T14:34:35Z) - A Graph Gaussian Embedding Method for Predicting Alzheimer's Disease
Progression with MEG Brain Networks [59.15734147867412]
Characterizing the subtle changes of functional brain networks associated with Alzheimer's disease (AD) is important for early diagnosis and prediction of disease progression.
We developed a new deep learning method, termed multiple graph Gaussian embedding model (MG2G)
We used MG2G to detect the intrinsic latent dimensionality of MEG brain networks, predict the progression of patients with mild cognitive impairment (MCI) to AD, and identify brain regions with network alterations related to MCI.
arXiv Detail & Related papers (2020-05-08T02:29:24Z) - Learning Dynamic and Personalized Comorbidity Networks from Event Data
using Deep Diffusion Processes [102.02672176520382]
Comorbid diseases co-occur and progress via complex temporal patterns that vary among individuals.
In electronic health records we can observe the different diseases a patient has, but can only infer the temporal relationship between each co-morbid condition.
We develop deep diffusion processes to model "dynamic comorbidity networks"
arXiv Detail & Related papers (2020-01-08T15:47:08Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.