Learning-based Computer-aided Prescription Model for Parkinson's
Disease: A Data-driven Perspective
- URL: http://arxiv.org/abs/2007.16103v1
- Date: Fri, 31 Jul 2020 14:34:35 GMT
- Title: Learning-based Computer-aided Prescription Model for Parkinson's
Disease: A Data-driven Perspective
- Authors: Yinghuan Shi and Wanqi Yang and Kim-Han Thung and Hao Wang and Yang
Gao and Yang Pan and Li Zhang and Dinggang Shen
- Abstract summary: We build a dataset by collecting symptoms of PD patients, and their prescription drug provided by neurologists.
Then, we build a novel computer-aided prescription model by learning the relation between observed symptoms and prescription drug.
For the new coming patients, we could recommend (predict) suitable prescription drug on their observed symptoms by our prescription model.
- Score: 61.70045118068213
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In this paper, we study a novel problem: "automatic prescription
recommendation for PD patients." To realize this goal, we first build a dataset
by collecting 1) symptoms of PD patients, and 2) their prescription drug
provided by neurologists. Then, we build a novel computer-aided prescription
model by learning the relation between observed symptoms and prescription drug.
Finally, for the new coming patients, we could recommend (predict) suitable
prescription drug on their observed symptoms by our prescription model. From
the methodology part, our proposed model, namely Prescription viA Learning
lAtent Symptoms (PALAS), could recommend prescription using the multi-modality
representation of the data. In PALAS, a latent symptom space is learned to
better model the relationship between symptoms and prescription drug, as there
is a large semantic gap between them. Moreover, we present an efficient
alternating optimization method for PALAS. We evaluated our method using the
data collected from 136 PD patients at Nanjing Brain Hospital, which can be
regarded as a large dataset in PD research community. The experimental results
demonstrate the effectiveness and clinical potential of our method in this
recommendation task, if compared with other competing methods.
Related papers
- Zero-shot and Few-shot Generation Strategies for Artificial Clinical Records [1.338174941551702]
This study assesses the capability of the Llama 2 LLM to create synthetic medical records that accurately reflect real patient information.
We focus on generating synthetic narratives for the History of Present Illness section, utilising data from the MIMIC-IV dataset for comparison.
Our findings suggest that this chain-of-thought prompted approach allows the zero-shot model to achieve results on par with those of fine-tuned models, based on Rouge metrics evaluation.
arXiv Detail & Related papers (2024-03-13T16:17:09Z) - Large Language Model Distilling Medication Recommendation Model [61.89754499292561]
We harness the powerful semantic comprehension and input-agnostic characteristics of Large Language Models (LLMs)
Our research aims to transform existing medication recommendation methodologies using LLMs.
To mitigate this, we have developed a feature-level knowledge distillation technique, which transfers the LLM's proficiency to a more compact model.
arXiv Detail & Related papers (2024-02-05T08:25:22Z) - Enhancing Acute Kidney Injury Prediction through Integration of Drug
Features in Intensive Care Units [0.0]
The relationship between acute kidney injury (AKI) prediction and nephrotoxic drugs has yet to be explored in the critical care setting.
This study proposes a novel approach that leverages patient prescription data as a modality to improve existing models for AKI prediction.
arXiv Detail & Related papers (2024-01-09T05:42:32Z) - A Hybrid Deep Spatio-Temporal Attention-Based Model for Parkinson's
Disease Diagnosis Using Resting State EEG Signals [8.526741765074677]
This study presents a deep learning-based model for the diagnosis of Parkinson's disease (PD) using resting state electroencephalogram (EEG) signal.
The model is designed using a hybrid model, consists of convolutional neural network (CNN), bidirectional gated recurrent unit (Bi-GRU) and attention mechanism.
The results show that the proposed model can accurately diagnose PD with high performance on both the training and hold-out datasets.
arXiv Detail & Related papers (2023-08-14T20:06:19Z) - Drug Synergistic Combinations Predictions via Large-Scale Pre-Training
and Graph Structure Learning [82.93806087715507]
Drug combination therapy is a well-established strategy for disease treatment with better effectiveness and less safety degradation.
Deep learning models have emerged as an efficient way to discover synergistic combinations.
Our framework achieves state-of-the-art results in comparison with other deep learning-based methods.
arXiv Detail & Related papers (2023-01-14T15:07:43Z) - An Ensemble Approach for Patient Prognosis of Head and Neck Tumor Using
Multimodal Data [0.0]
We propose a multimodal network that ensembles deep multi-task logistic regression (MTLR), Cox proportional hazard (CoxPH) and CNN models to predict prognostic outcomes for patients with head and neck tumors.
Our proposed ensemble solution achieves a C-index of 0.72 on The HECKTOR test set that saved us the first place in prognosis task of the HECKTOR challenge.
arXiv Detail & Related papers (2022-02-25T07:50:59Z) - Conditional Generation Net for Medication Recommendation [73.09366442098339]
Medication recommendation targets to provide a proper set of medicines according to patients' diagnoses, which is a critical task in clinics.
We propose Conditional Generation Net (COGNet) which introduces a novel copy-or-predict mechanism to generate the set of medicines.
We validate the proposed model on the public MIMIC data set, and the experimental results show that the proposed model can outperform state-of-the-art approaches.
arXiv Detail & Related papers (2022-02-14T10:16:41Z) - Medical Profile Model: Scientific and Practical Applications in
Healthcare [1.718235998156457]
We present the patient histories as temporal sequences of diseases for which embeddings are learned in an unsupervised setup.
The embedding space includes demographic parameters which allow the creation of generalized patient profiles.
The training of such a medical profile model has been performed on a dataset of more than one million patients.
arXiv Detail & Related papers (2021-06-21T13:30:43Z) - Adversarial Sample Enhanced Domain Adaptation: A Case Study on
Predictive Modeling with Electronic Health Records [57.75125067744978]
We propose a data augmentation method to facilitate domain adaptation.
adversarially generated samples are used during domain adaptation.
Results confirm the effectiveness of our method and the generality on different tasks.
arXiv Detail & Related papers (2021-01-13T03:20:20Z) - MET: Multimodal Perception of Engagement for Telehealth [52.54282887530756]
We present MET, a learning-based algorithm for perceiving a human's level of engagement from videos.
We release a new dataset, MEDICA, for mental health patient engagement detection.
arXiv Detail & Related papers (2020-11-17T15:18:38Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.