The Smearing of Quasi-Particles: Signatures in the Entanglement Entropy of Excited Many-Particle Systems
- URL: http://arxiv.org/abs/2412.20812v1
- Date: Mon, 30 Dec 2024 09:07:14 GMT
- Title: The Smearing of Quasi-Particles: Signatures in the Entanglement Entropy of Excited Many-Particle Systems
- Authors: Jagannath Sutradhar, Jonathan Ruhman, Avraham Klein, Dimitri Gutman, Richard Berkovits,
- Abstract summary: entanglement spectrum serves as a powerful tool for probing the structure and dynamics of quantum many-body systems.
In this paper, we investigate the crossover between these two regimes, focusing on the role of quasi-particles (QPs) in mediating this transition.
We find that a hallmark of QPs is a linear dependence of the eigenstate EE on energy, which breaks down at high energy and in the limit of strong interaction.
- Score: 0.0
- License:
- Abstract: The entanglement spectrum serves as a powerful tool for probing the structure and dynamics of quantum many-body systems, revealing key information about symmetry, topology, and excitations. While the entanglement entropy (EE) of ground states typically follows an area law, highly excited states obey a volume law, leading to a striking contrast in their scaling behavior. In this paper, we investigate the crossover between these two regimes, focusing on the role of quasi-particles (QPs) in mediating this transition. By analyzing the energy dependence of EE in various many-body systems, we explore how the presence of long-lived QPs influences the entanglement structure of excited states. We present numerical results for spinless fermions, a spin chain near a many-body localization transition, and the Sachdev-Ye-Kitaev (SYK) model, which lacks a conventional QP description. Our findings are complemented by a theoretical model based on Fermi liquid theory, providing insight into the interaction-dependent scaling of EE and its consistency with numerical simulations. We find that a hallmark of QPs is a linear dependence of the eigenstate EE on energy, which breaks down at high energy and in the limit of strong interaction. The slope of this linear dependence reflects the QP weight, which reduces with interaction strength.
Related papers
- Entanglement in Quantum Dots: Insights from Dynamic Susceptibility and Quantum Fisher Information [0.0]
This study investigates the entanglement properties of quantum dots (QDs) under a universal Hamiltonian where the Coulomb interaction between particles (electrons or holes) decouples into a charging energy and an exchange coupling term.
By analyzing the dynamic susceptibility and quantum Fisher information (QFI), we uncover intriguing behaviors influenced by exchange constants, temperature variations, and confinement effects.
arXiv Detail & Related papers (2024-04-23T19:31:12Z) - Directional superradiance in a driven ultracold atomic gas in free-space [0.0]
We study a dense ensemble illuminated by a strong coherent drive while interacting via dipole-dipole interactions.
Although the steady-state features some similarities to the reported superradiant to normal non-induced transition, we observe significant qualitative and quantitative differences.
We develop a simple theoretical model that explains the scaling properties by accounting for interaction-equilibrium inhomogeneous effects and spontaneous emission.
arXiv Detail & Related papers (2024-03-22T18:14:44Z) - Dipolar quantum solids emerging in a Hubbard quantum simulator [45.82143101967126]
Long-range and anisotropic interactions promote rich spatial structure in quantum mechanical many-body systems.
We show that novel strongly correlated quantum phases can be realized using long-range dipolar interaction in optical lattices.
This work opens the door to quantum simulations of a wide range of lattice models with long-range and anisotropic interactions.
arXiv Detail & Related papers (2023-06-01T16:49:20Z) - Universality of critical dynamics with finite entanglement [68.8204255655161]
We study how low-energy dynamics of quantum systems near criticality are modified by finite entanglement.
Our result establishes the precise role played by entanglement in time-dependent critical phenomena.
arXiv Detail & Related papers (2023-01-23T19:23:54Z) - Formation of robust bound states of interacting microwave photons [148.37607455646454]
One of the hallmarks of interacting systems is the formation of multi-particle bound states.
We develop a high fidelity parameterizable fSim gate that implements the periodic quantum circuit of the spin-1/2 XXZ model.
By placing microwave photons in adjacent qubit sites, we study the propagation of these excitations and observe their bound nature for up to 5 photons.
arXiv Detail & Related papers (2022-06-10T17:52:29Z) - Breakdown of quantum-classical correspondence and dynamical generation
of entanglement [6.167267225728292]
We study the generation of quantum entanglement induced by an ideal Fermi gas confined in a chaotic cavity.
We find that the breakdown of the quantum-classical correspondence of particle motion, via dramatically changing the spatial structure of many-body wavefunction, leads to profound changes of the entanglement structure.
arXiv Detail & Related papers (2021-04-14T03:09:24Z) - Excited-state quantum phase transitions [0.0]
We review the effects of excited-state quantum phase transitions (ESQPTs) in interacting many-body systems with finite numbers of collective degrees of freedom.
We classify typical ESQPT signatures in the spectra of energy eigenstates with respect to the underlying classical dynamics.
We describe thermodynamic and dynamic consequences of ESQPTs, like those in microcanonical thermodynamics, quantum quench dynamics, and in the response to nearly adiabatic or periodic driving.
arXiv Detail & Related papers (2020-11-03T12:30:01Z) - Quantum Non-equilibrium Many-Body Spin-Photon Systems [91.3755431537592]
dissertation concerns the quantum dynamics of strongly-correlated quantum systems in out-of-equilibrium states.
Our main results can be summarized in three parts: Signature of Critical Dynamics, Driven Dicke Model as a Test-bed of Ultra-Strong Coupling, and Beyond the Kibble-Zurek Mechanism.
arXiv Detail & Related papers (2020-07-23T19:05:56Z) - Probing eigenstate thermalization in quantum simulators via
fluctuation-dissipation relations [77.34726150561087]
The eigenstate thermalization hypothesis (ETH) offers a universal mechanism for the approach to equilibrium of closed quantum many-body systems.
Here, we propose a theory-independent route to probe the full ETH in quantum simulators by observing the emergence of fluctuation-dissipation relations.
Our work presents a theory-independent way to characterize thermalization in quantum simulators and paves the way to quantum simulate condensed matter pump-probe experiments.
arXiv Detail & Related papers (2020-07-20T18:00:02Z) - Entanglement-spectrum characterization of ground-state nonanalyticities
in coupled excitation-phonon models [0.0]
Small-polaron transitions are analyzed through the prism of the entanglement spectrum of the excitation-phonon system.
The behavior of the entanglement entropy in the vicinity of the critical excitation-phonon coupling strength chiefly originates from one specific entanglement-spectrum eigenvalue.
arXiv Detail & Related papers (2020-01-30T08:41:00Z) - Einselection from incompatible decoherence channels [62.997667081978825]
We analyze an open quantum dynamics inspired by CQED experiments with two non-commuting Lindblad operators.
We show that Fock states remain the most robust states to decoherence up to a critical coupling.
arXiv Detail & Related papers (2020-01-29T14:15:19Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.