論文の概要: Enhancing Multimodal Emotion Recognition through Multi-Granularity Cross-Modal Alignment
- arxiv url: http://arxiv.org/abs/2412.20821v1
- Date: Mon, 30 Dec 2024 09:30:41 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-12-31 16:04:49.616315
- Title: Enhancing Multimodal Emotion Recognition through Multi-Granularity Cross-Modal Alignment
- Title(参考訳): マルチグラニュラリティ・クロスモーダルアライメントによるマルチモーダル感情認識の強化
- Authors: Xuechen Wang, Shiwan Zhao, Haoqin Sun, Hui Wang, Jiaming Zhou, Yong Qin,
- Abstract要約: 本稿では、分散ベース、インスタンスベース、トークンベースのアライメントモジュールを含む包括的アプローチにより、MGCMA(Multi-Granularity Cross-Modal Alignment)フレームワークを紹介する。
IEMOCAPに関する実験により,提案手法が現状技術より優れていることを示す。
- 参考スコア(独自算出の注目度): 10.278127492434297
- License:
- Abstract: Multimodal emotion recognition (MER), leveraging speech and text, has emerged as a pivotal domain within human-computer interaction, demanding sophisticated methods for effective multimodal integration. The challenge of aligning features across these modalities is significant, with most existing approaches adopting a singular alignment strategy. Such a narrow focus not only limits model performance but also fails to address the complexity and ambiguity inherent in emotional expressions. In response, this paper introduces a Multi-Granularity Cross-Modal Alignment (MGCMA) framework, distinguished by its comprehensive approach encompassing distribution-based, instance-based, and token-based alignment modules. This framework enables a multi-level perception of emotional information across modalities. Our experiments on IEMOCAP demonstrate that our proposed method outperforms current state-of-the-art techniques.
- Abstract(参考訳): 音声とテキストを活用するマルチモーダル感情認識(MER)は、人間とコンピュータの相互作用において重要な領域として現れ、効果的なマルチモーダル統合のための洗練された手法を要求している。
これらのモダリティにまたがって機能を調整するという課題は、既存のほとんどのアプローチでは特異なアライメント戦略を採用しています。
このような狭い焦点は、モデルのパフォーマンスを制限するだけでなく、感情表現に固有の複雑さとあいまいさにも対処できない。
そこで本研究では,分散ベース,インスタンスベース,トークンベースのアライメントモジュールを包含する包括的アプローチにより,MGCMA(Multi-Granularity Cross-Modal Alignment)フレームワークを紹介した。
この枠組みは、モダリティをまたいだ感情情報の多段階的認識を可能にする。
IEMOCAPに関する実験により,提案手法が現状技術より優れていることを示す。
関連論文リスト
- Unified Generative and Discriminative Training for Multi-modal Large Language Models [88.84491005030316]
生成的トレーニングにより、視覚言語モデル(VLM)は様々な複雑なタスクに取り組むことができる。
CLIPのようなモデルで実証された差別的トレーニングは、ゼロショットイメージテキストの分類と検索に優れています。
本稿では,両パラダイムの強みを統合する統一的アプローチを提案する。
論文 参考訳(メタデータ) (2024-11-01T01:51:31Z) - Shapley Value-based Contrastive Alignment for Multimodal Information Extraction [17.04865437165252]
我々は、画像-コンテキスト-テキストインタラクションの新しいパラダイムを導入する。
本稿では,新しいシェープ値に基づくコントラストアライメント(Shap-CA)法を提案する。
我々の手法は既存の最先端手法を著しく上回っている。
論文 参考訳(メタデータ) (2024-07-25T08:15:43Z) - AIMDiT: Modality Augmentation and Interaction via Multimodal Dimension Transformation for Emotion Recognition in Conversations [57.99479708224221]
AIMDiTと呼ばれる新しいフレームワークを提案し、深い特徴のマルチモーダル融合の問題を解決する。
公開ベンチマークデータセットMELDでAIMDiTフレームワークを使用して行った実験では、Acc-7とw-F1メトリクスの2.34%と2.87%の改善が明らかにされた。
論文 参考訳(メタデータ) (2024-04-12T11:31:18Z) - Joint Multimodal Transformer for Emotion Recognition in the Wild [49.735299182004404]
マルチモーダル感情認識(MMER)システムは、通常、単調なシステムよりも優れている。
本稿では,キーベースのクロスアテンションと融合するために,ジョイントマルチモーダルトランス (JMT) を利用するMMER法を提案する。
論文 参考訳(メタデータ) (2024-03-15T17:23:38Z) - Text-centric Alignment for Multi-Modality Learning [3.6961400222746748]
マルチモーダル学習のためのテキスト中心アライメント(TAMML)を提案する。
テキストのユニークな性質を統一意味空間として活用することにより、TAMMLは目に見えない、多様性があり、予測不可能なモダリティの組み合わせを扱う上で、大幅な改善を示す。
本研究は,モダリティの可用性が動的で不確実な実世界のアプリケーションに対して,フレキシブルで効果的なソリューションを提供することによって,この分野に寄与する。
論文 参考訳(メタデータ) (2024-02-12T22:07:43Z) - Unified Multi-modal Unsupervised Representation Learning for
Skeleton-based Action Understanding [62.70450216120704]
教師なしの事前訓練は骨格に基づく行動理解において大きな成功を収めた。
我々はUmURLと呼ばれる統一マルチモーダル非教師なし表現学習フレームワークを提案する。
UmURLは効率的な早期融合戦略を利用して、マルチモーダル機能を単一ストリームで共同でエンコードする。
論文 参考訳(メタデータ) (2023-11-06T13:56:57Z) - Exploiting Modality-Specific Features For Multi-Modal Manipulation
Detection And Grounding [54.49214267905562]
マルチモーダルな操作検出とグラウンド処理のためのトランスフォーマーベースのフレームワークを構築する。
本フレームワークは,マルチモーダルアライメントの能力を維持しながら,モダリティ特有の特徴を同時に探求する。
本稿では,グローバルな文脈的キューを各モーダル内に適応的に集約する暗黙的操作クエリ(IMQ)を提案する。
論文 参考訳(メタデータ) (2023-09-22T06:55:41Z) - Improving Anomaly Segmentation with Multi-Granularity Cross-Domain
Alignment [17.086123737443714]
異常セグメンテーションは、画像中の非定型物体を識別する上で重要な役割を担っている。
既存の手法は合成データに顕著な結果を示すが、合成データドメインと実世界のデータドメインの相違を考慮できないことが多い。
シーンと個々のサンプルレベルの両方で、ドメイン間の機能を調和させるのに適した、マルチグラニュラリティ・クロスドメインアライメントフレームワークを導入します。
論文 参考訳(メタデータ) (2023-08-16T22:54:49Z) - MIR-GAN: Refining Frame-Level Modality-Invariant Representations with
Adversarial Network for Audio-Visual Speech Recognition [23.042478625584653]
フレームレベルのモダリティ不変表現(MIR-GAN)を洗練するための逆ネットワークを提案する。
特に,フレームレベルのモダリティ不変表現(MIR-GAN)を洗練するための逆ネットワークを提案する。
論文 参考訳(メタデータ) (2023-06-18T14:02:20Z) - Group Gated Fusion on Attention-based Bidirectional Alignment for
Multimodal Emotion Recognition [63.07844685982738]
本稿では、LSTM隠蔽状態上の注目に基づく双方向アライメントネットワークで構成されるGBAN(Gated Bidirectional Alignment Network)と呼ばれる新しいモデルを提案する。
LSTMの最後の隠れ状態よりもアテンション整列表現の方が有意に優れていたことを実証的に示す。
提案したGBANモデルは、IEMOCAPデータセットにおける既存の最先端マルチモーダルアプローチよりも優れている。
論文 参考訳(メタデータ) (2022-01-17T09:46:59Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。