About rectified sigmoid function for enhancing the accuracy of Physics-Informed Neural Networks
- URL: http://arxiv.org/abs/2412.20851v1
- Date: Mon, 30 Dec 2024 10:42:28 GMT
- Title: About rectified sigmoid function for enhancing the accuracy of Physics-Informed Neural Networks
- Authors: Vasiliy A. Es'kin, Alexey O. Malkhanov, Mikhail E. Smorkalov,
- Abstract summary: A rectified sigmoid activation function has been proposed to solve physical problems described by the ODE with neural networks.<n> Numerical experiments demonstrate the superiority of neural networks with a rectified sigmoid function over neural networks with a sigmoid function.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The article is devoted to the study of neural networks with one hidden layer and a modified activation function for solving physical problems. A rectified sigmoid activation function has been proposed to solve physical problems described by the ODE with neural networks. Algorithms for physics-informed data-driven initialization of a neural network and a neuron-by-neuron gradient-free fitting method have been presented for the neural network with this activation function. Numerical experiments demonstrate the superiority of neural networks with a rectified sigmoid function over neural networks with a sigmoid function in the accuracy of solving physical problems (harmonic oscillator, relativistic slingshot, and Lorentz system).
Related papers
- NOBLE -- Neural Operator with Biologically-informed Latent Embeddings to Capture Experimental Variability in Biological Neuron Models [68.89389652724378]
NOBLE is a neural operator framework that learns a mapping from a continuous frequency-modulated embedding of interpretable neuron features to the somatic voltage response induced by current injection.<n>It predicts distributions of neural dynamics accounting for the intrinsic experimental variability.<n>NOBLE is the first scaled-up deep learning framework validated on real experimental data.
arXiv Detail & Related papers (2025-06-05T01:01:18Z) - Are Two Hidden Layers Still Enough for the Physics-Informed Neural Networks? [0.0]
The article discusses the development of various methods and techniques for initializing and training neural networks with a single hidden layer.<n>The proposed methods have been extended to 2D problems using the separable physics-informed neural networks approach.
arXiv Detail & Related papers (2024-12-26T14:30:54Z) - Deep-Unrolling Multidimensional Harmonic Retrieval Algorithms on Neuromorphic Hardware [78.17783007774295]
This paper explores the potential of conversion-based neuromorphic algorithms for highly accurate and energy-efficient single-snapshot multidimensional harmonic retrieval.
A novel method for converting the complex-valued convolutional layers and activations into spiking neural networks (SNNs) is developed.
The converted SNNs achieve almost five-fold power efficiency at moderate performance loss compared to the original CNNs.
arXiv Detail & Related papers (2024-12-05T09:41:33Z) - Adapting the Biological SSVEP Response to Artificial Neural Networks [5.4712259563296755]
This paper introduces a novel approach to neuron significance assessment inspired by frequency tagging, a technique from neuroscience.
Experiments conducted with a convolutional neural network for image classification reveal notable harmonics and intermodulations in neuron-specific responses under part-based frequency tagging.
The proposed method holds promise for applications in network pruning, and model interpretability, contributing to the advancement of explainable artificial intelligence.
arXiv Detail & Related papers (2024-11-15T10:02:48Z) - Graph Neural Networks for Learning Equivariant Representations of Neural Networks [55.04145324152541]
We propose to represent neural networks as computational graphs of parameters.
Our approach enables a single model to encode neural computational graphs with diverse architectures.
We showcase the effectiveness of our method on a wide range of tasks, including classification and editing of implicit neural representations.
arXiv Detail & Related papers (2024-03-18T18:01:01Z) - Globally Optimal Training of Neural Networks with Threshold Activation
Functions [63.03759813952481]
We study weight decay regularized training problems of deep neural networks with threshold activations.
We derive a simplified convex optimization formulation when the dataset can be shattered at a certain layer of the network.
arXiv Detail & Related papers (2023-03-06T18:59:13Z) - Spiking neural network for nonlinear regression [68.8204255655161]
Spiking neural networks carry the potential for a massive reduction in memory and energy consumption.
They introduce temporal and neuronal sparsity, which can be exploited by next-generation neuromorphic hardware.
A framework for regression using spiking neural networks is proposed.
arXiv Detail & Related papers (2022-10-06T13:04:45Z) - Combinatorial optimization solving by coherent Ising machines based on
spiking neural networks [8.533799783981525]
Spiking neural network is a neuromorphic computing that is believed to improve the level of intelligence and provide advantages for quantum computing.
In this work, we design an optical spiking neural network and find that it can be used to accelerate the speed of parametric equations.
arXiv Detail & Related papers (2022-08-16T02:19:05Z) - Physics informed neural networks for continuum micromechanics [68.8204255655161]
Recently, physics informed neural networks have successfully been applied to a broad variety of problems in applied mathematics and engineering.
Due to the global approximation, physics informed neural networks have difficulties in displaying localized effects and strong non-linear solutions by optimization.
It is shown, that the domain decomposition approach is able to accurately resolve nonlinear stress, displacement and energy fields in heterogeneous microstructures obtained from real-world $mu$CT-scans.
arXiv Detail & Related papers (2021-10-14T14:05:19Z) - Dynamic Neural Diversification: Path to Computationally Sustainable
Neural Networks [68.8204255655161]
Small neural networks with a constrained number of trainable parameters, can be suitable resource-efficient candidates for many simple tasks.
We explore the diversity of the neurons within the hidden layer during the learning process.
We analyze how the diversity of the neurons affects predictions of the model.
arXiv Detail & Related papers (2021-09-20T15:12:16Z) - Deep Kronecker neural networks: A general framework for neural networks
with adaptive activation functions [4.932130498861987]
We propose a new type of neural networks, Kronecker neural networks (KNNs), that form a general framework for neural networks with adaptive activation functions.
Under suitable conditions, KNNs induce a faster decay of the loss than that by the feed-forward networks.
arXiv Detail & Related papers (2021-05-20T04:54:57Z) - Advantages of biologically-inspired adaptive neural activation in RNNs
during learning [10.357949759642816]
We introduce a novel parametric family of nonlinear activation functions inspired by input-frequency response curves of biological neurons.
We find that activation adaptation provides distinct task-specific solutions and in some cases, improves both learning speed and performance.
arXiv Detail & Related papers (2020-06-22T13:49:52Z) - Banach Space Representer Theorems for Neural Networks and Ridge Splines [17.12783792226575]
We develop a variational framework to understand the properties of the functions learned by neural networks fit to data.
We derive a representer theorem showing that finite-width, single-hidden layer neural networks are solutions to inverse problems.
arXiv Detail & Related papers (2020-06-10T02:57:37Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.