SoftPatch+: Fully Unsupervised Anomaly Classification and Segmentation
- URL: http://arxiv.org/abs/2412.20870v2
- Date: Mon, 13 Jan 2025 04:11:06 GMT
- Title: SoftPatch+: Fully Unsupervised Anomaly Classification and Segmentation
- Authors: Chengjie Wang, Xi Jiang, Bin-Bin Gao, Zhenye Gan, Yong Liu, Feng Zheng, Lizhuang Ma,
- Abstract summary: This paper is the first to consider fully unsupervised industrial anomaly detection (i.e., unsupervised AD with noisy data)
We propose memory-based unsupervised AD methods, SoftPatch and SoftPatch+, which efficiently denoise the data at the patch level.
Compared with existing methods, SoftPatch maintains a strong modeling ability of normal data and alleviates the overconfidence problem in coreset.
Comprehensive experiments conducted in diverse noise scenarios demonstrate that both SoftPatch and SoftPatch+ outperform the state-of-the-art AD methods on the MVTecAD, ViSA, and BTAD benchmarks.
- Score: 84.07909405887696
- License:
- Abstract: Although mainstream unsupervised anomaly detection (AD) (including image-level classification and pixel-level segmentation)algorithms perform well in academic datasets, their performance is limited in practical application due to the ideal experimental setting of clean training data. Training with noisy data is an inevitable problem in real-world anomaly detection but is seldom discussed. This paper is the first to consider fully unsupervised industrial anomaly detection (i.e., unsupervised AD with noisy data). To solve this problem, we proposed memory-based unsupervised AD methods, SoftPatch and SoftPatch+, which efficiently denoise the data at the patch level. Noise discriminators are utilized to generate outlier scores for patch-level noise elimination before coreset construction. The scores are then stored in the memory bank to soften the anomaly detection boundary. Compared with existing methods, SoftPatch maintains a strong modeling ability of normal data and alleviates the overconfidence problem in coreset, and SoftPatch+ has more robust performance which is articularly useful in real-world industrial inspection scenarios with high levels of noise (from 10% to 40%). Comprehensive experiments conducted in diverse noise scenarios demonstrate that both SoftPatch and SoftPatch+ outperform the state-of-the-art AD methods on the MVTecAD, ViSA, and BTAD benchmarks. Furthermore, the performance of SoftPatch and SoftPatch+ is comparable to that of the noise-free methods in conventional unsupervised AD setting. The code of the proposed methods can be found at https://github.com/TencentYoutuResearch/AnomalyDetection-SoftPatch.
Related papers
- Unsupervised CP-UNet Framework for Denoising DAS Data with Decay Noise [13.466125373185399]
Distributed acoustic sensor (DAS) technology leverages optical fiber cables to detect acoustic signals.
DAS exhibits a lower signal-to-noise ratio (S/N) compared to geophones.
This reduced S/N can negatively impact data analyses containing inversion and interpretation.
arXiv Detail & Related papers (2025-02-19T03:09:49Z) - One-step Noisy Label Mitigation [86.57572253460125]
Mitigating the detrimental effects of noisy labels on the training process has become increasingly critical.
We propose One-step Anti-Noise (OSA), a model-agnostic noisy label mitigation paradigm.
We empirically demonstrate the superiority of OSA, highlighting its enhanced training robustness, improved task transferability, ease of deployment, and reduced computational costs.
arXiv Detail & Related papers (2024-10-02T18:42:56Z) - Robust Learning under Hybrid Noise [24.36707245704713]
We propose a novel unified learning framework called "Feature and Label Recovery" (FLR) to combat the hybrid noise from the perspective of data recovery.
arXiv Detail & Related papers (2024-07-04T16:13:25Z) - SoftPatch: Unsupervised Anomaly Detection with Noisy Data [67.38948127630644]
This paper considers label-level noise in image sensory anomaly detection for the first time.
We propose a memory-based unsupervised AD method, SoftPatch, which efficiently denoises the data at the patch level.
Compared with existing methods, SoftPatch maintains a strong modeling ability of normal data and alleviates the overconfidence problem in coreset.
arXiv Detail & Related papers (2024-03-21T08:49:34Z) - Class Prototype-based Cleaner for Label Noise Learning [73.007001454085]
Semi-supervised learning methods are current SOTA solutions to the noisy-label learning problem.
We propose a simple yet effective solution, named textbfClass textbfPrototype-based label noise textbfCleaner.
arXiv Detail & Related papers (2022-12-21T04:56:41Z) - Noise-resistant Deep Metric Learning with Ranking-based Instance
Selection [59.286567680389766]
We propose a noise-resistant training technique for DML, which we name Probabilistic Ranking-based Instance Selection with Memory (PRISM)
PRISM identifies noisy data in a minibatch using average similarity against image features extracted from several previous versions of the neural network.
To alleviate the high computational cost brought by the memory bank, we introduce an acceleration method that replaces individual data points with the class centers.
arXiv Detail & Related papers (2021-03-30T03:22:17Z) - Tackling Instance-Dependent Label Noise via a Universal Probabilistic
Model [80.91927573604438]
This paper proposes a simple yet universal probabilistic model, which explicitly relates noisy labels to their instances.
Experiments on datasets with both synthetic and real-world label noise verify that the proposed method yields significant improvements on robustness.
arXiv Detail & Related papers (2021-01-14T05:43:51Z) - NoiseRank: Unsupervised Label Noise Reduction with Dependence Models [11.08987870095179]
We propose NoiseRank, for unsupervised label noise reduction using Markov Random Fields (MRF)
We construct a dependence model to estimate the posterior probability of an instance being incorrectly labeled given the dataset, and rank instances based on their estimated probabilities.
NoiseRank improves state-of-the-art classification on Food101-N (20% noise) and is effective on high noise Clothing-1M (40% noise)
arXiv Detail & Related papers (2020-03-15T01:10:25Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.