論文の概要: CF-CGN: Channel Fingerprints Extrapolation for Multi-band Massive MIMO Transmission based on Cycle-Consistent Generative Networks
- arxiv url: http://arxiv.org/abs/2412.20885v1
- Date: Mon, 30 Dec 2024 11:52:39 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-12-31 16:03:51.498710
- Title: CF-CGN: Channel Fingerprints Extrapolation for Multi-band Massive MIMO Transmission based on Cycle-Consistent Generative Networks
- Title(参考訳): CF-CGN-Channel Fingerprints Extrapolation for Multi-band Massive MIMO Transmission based on Cycle-Consistent Generative Networks
- Authors: Chenjie Xie, Li You, Zhenzhou Jin, Jinke Tang, Xiqi Gao, Xiang-Gen Xia,
- Abstract要約: マルチバンドマルチインプット多重出力(MIMO)通信は、ライセンスされたスペクトルとライセンスされていないスペクトルの協調を促進することができる。
チャネル指紋(CF)は、チャネル状態情報(CSI)の取得と計算複雑性の低減を支援するために用いられる。
我々は、ライセンス付きおよび未ライセンスのスペクトルが協調してユビキタス接続を実現するマルチバンドMIMO伝送のためのCFを外挿するCF-CGNを提案する。
- 参考スコア(独自算出の注目度): 26.720410416586677
- License:
- Abstract: Multi-band massive multiple-input multiple-output (MIMO) communication can promote the cooperation of licensed and unlicensed spectra, effectively enhancing spectrum efficiency for Wi-Fi and other wireless systems. As an enabler for multi-band transmission, channel fingerprints (CF), also known as the channel knowledge map or radio environment map, are used to assist channel state information (CSI) acquisition and reduce computational complexity. In this paper, we propose CF-CGN (Channel Fingerprints with Cycle-consistent Generative Networks) to extrapolate CF for multi-band massive MIMO transmission where licensed and unlicensed spectra cooperate to provide ubiquitous connectivity. Specifically, we first model CF as a multichannel image and transform the extrapolation problem into an image translation task, which converts CF from one frequency to another by exploring the shared characteristics of statistical CSI in the beam domain. Then, paired generative networks are designed and coupled by variable-weight cycle consistency losses to fit the reciprocal relationship at different bands. Matched with the coupled networks, a joint training strategy is developed accordingly, supporting synchronous optimization of all trainable parameters. During the inference process, we also introduce a refining scheme to improve the extrapolation accuracy based on the resolution of CF. Numerical results illustrate that our proposed CF-CGN can achieve bidirectional extrapolation with an error of 5-17 dB lower than the benchmarks in different communication scenarios, demonstrating its excellent generalization ability. We further show that the sum rate performance assisted by CF-CGN-based CF is close to that with perfect CSI for multi-band massive MIMO transmission.
- Abstract(参考訳): マルチバンド・マルチインプット・マルチアウトプット(MIMO)通信は、Wi-Fiや他の無線システムのスペクトル効率を効果的に向上させ、ライセンスされたスペクトルとライセンスされていないスペクトルの協調を促進することができる。
マルチバンド伝送の実現手段として、チャネル知識マップ(英語版)や無線環境マップ(英語版)としても知られるチャネル指紋(CF)が、チャネル状態情報(CSI)の取得を支援し、計算複雑性を低減するために用いられる。
本稿では,マルチバンド大容量MIMO伝送のためのCF-CGN(Channel Fingerprints with Cycle-Consistent Generative Networks)を提案する。
具体的には、まずCFをマルチチャネル画像としてモデル化し、外挿問題を画像変換タスクに変換し、ビーム領域における統計CSIの共有特性を探索することにより、CFをある周波数から別の周波数に変換する。
次に、異なる帯域における相互関係に適合するように、ペア生成ネットワークを可変重周期整合損失により設計・結合する。
結合ネットワークと組み合わせて、訓練可能なパラメータの同期最適化をサポートする共同トレーニング戦略を開発する。
また,推測過程において,CFの分解能に基づいた補間精度を向上させるための精錬手法を導入する。
計算結果から,提案したCF-CGNは,異なる通信シナリオにおけるベンチマークよりも5-17dBの誤差で双方向の補間が可能であり,優れた一般化能力を示している。
さらに,CF-CGNをベースとしたCFによる総和レート性能は,マルチバンドMIMO伝送における完全CSIに近いことを示す。
関連論文リスト
- Communication-Efficient Federated Learning by Quantized Variance Reduction for Heterogeneous Wireless Edge Networks [55.467288506826755]
フェデレーテッド・ラーニング(FL)は、無線エッジネットワークにおけるローカル・プライバシ・アウェア・コラボレーティブ・モデルトレーニングの有効なソリューションとして認識されている。
既存の通信効率の高いFLアルゴリズムは、デバイス間の大きなばらつきを低減できない。
本稿では,高度分散還元方式に依存する新しい通信効率FLアルゴリズムであるFedQVRを提案する。
論文 参考訳(メタデータ) (2025-01-20T04:26:21Z) - Performance Analysis for Resource Constrained Decentralized Federated
Learning Over Wireless Networks [4.76281731053599]
分散連合学習(DFL)は、通信オーバーヘッドと中央サーバへの依存を著しく引き起こす可能性がある。
本研究では、無線ネットワーク上の異なる通信方式(デジタルおよびアナログ)を用いて、資源制約付きDFLの性能を分析し、通信効率を最適化する。
論文 参考訳(メタデータ) (2023-08-12T07:56:48Z) - Communication-Efficient Framework for Distributed Image Semantic
Wireless Transmission [68.69108124451263]
IoTデバイスを用いたマルチタスク分散画像伝送のためのFederated Learning-based semantic communication (FLSC)フレームワーク。
各リンクは階層型視覚変換器(HVT)ベースの抽出器とタスク適応トランスレータで構成される。
チャネル状態情報に基づく多重出力多重出力伝送モジュール。
論文 参考訳(メタデータ) (2023-08-07T16:32:14Z) - Hybrid Knowledge-Data Driven Channel Semantic Acquisition and
Beamforming for Cell-Free Massive MIMO [6.010360758759109]
本稿では、ユビキタス・拡張現実(XR)アプリケーションのサポートを改善するために、屋外無線システムの進歩に焦点を当てる。
セルレス大規模マルチインプットマルチアウトプット(MIMO)システムにおいて,チャネル意味獲得とマルチユーザビームフォーミングのためのハイブリッド知識データ駆動方式を提案する。
論文 参考訳(メタデータ) (2023-07-06T15:35:55Z) - Joint Channel Estimation and Feedback with Masked Token Transformers in
Massive MIMO Systems [74.52117784544758]
本稿では,CSI行列内の固有周波数領域相関を明らかにするエンコーダデコーダに基づくネットワークを提案する。
エンコーダ・デコーダネットワーク全体がチャネル圧縮に使用される。
提案手法は,共同作業における現状のチャネル推定およびフィードバック技術より優れる。
論文 参考訳(メタデータ) (2023-06-08T06:15:17Z) - Multi-Flow Transmission in Wireless Interference Networks: A Convergent
Graph Learning Approach [9.852567834643292]
ネットワークデータ信号の2段階干渉対応マルチフロー最適化(DIAMOND)という新しいアルゴリズムを提案する。
集中型ステージは、グラフニューラルネットワーク(GNN)強化学習(RL)ルーティングエージェントの新しい設計を用いて、マルチフロー伝送戦略を計算する。
そして、分散学習更新の新しい設計に基づいて、分散ステージにより性能が向上する。
論文 参考訳(メタデータ) (2023-03-27T18:49:47Z) - Multi-task Learning Approach for Modulation and Wireless Signal
Classification for 5G and Beyond: Edge Deployment via Model Compression [1.218340575383456]
将来的な通信網は、異種無線デバイスの成長に対応するために、少ないスペクトルに対処する必要がある。
我々は、深層ニューラルネットワークに基づくマルチタスク学習フレームワークの可能性を利用して、変調と信号分類タスクを同時に学習する。
公共利用のための包括的ヘテロジニアス無線信号データセットを提供する。
論文 参考訳(メタデータ) (2022-02-26T14:51:02Z) - Data-Driven Deep Learning Based Hybrid Beamforming for Aerial Massive
MIMO-OFDM Systems with Implicit CSI [29.11998008894847]
本稿では,データ駆動型深層学習に基づく統合ハイブリッドビームフォーミングフレームワークを提案する。
TDDシステムでは、提案されたDLベースのアプローチは、E2Eニューラルネットワークとして、アップリンクパイロットの組み合わせとダウンリンクハイブリッドビームフォーミングモジュールを共同でモデル化する。
FDDシステムにおいて、我々は、E2Eニューラルネットワークとして、ダウンリンクパイロットトランスミッション、アップリンクCSIフィードバック、およびダウンリンクハイブリッドビームフォーミングモジュールを共同でモデル化する。
論文 参考訳(メタデータ) (2022-01-18T07:21:00Z) - Low-Latency Federated Learning over Wireless Channels with Differential
Privacy [142.5983499872664]
フェデレートラーニング(FL)では、モデルトレーニングはクライアントに分散し、ローカルモデルは中央サーバによって集約される。
本稿では,各クライアントの差分プライバシ(DP)要件だけでなく,全体としてのトレーニング性能に制約された無線チャネル上でのFLトレーニング遅延を最小限に抑えることを目的とする。
論文 参考訳(メタデータ) (2021-06-20T13:51:18Z) - Deep Multimodal Fusion by Channel Exchanging [87.40768169300898]
本稿では,異なるモードのサブネットワーク間で動的にチャネルを交換するパラメータフリーマルチモーダル融合フレームワークを提案する。
このような交換プロセスの有効性は、畳み込みフィルタを共有してもBN層をモダリティで分離しておくことで保証される。
論文 参考訳(メタデータ) (2020-11-10T09:53:20Z) - Wireless Power Control via Counterfactual Optimization of Graph Neural
Networks [124.89036526192268]
本稿では,無線ネットワークにおけるダウンリンク電力制御の問題点について考察する。
コンカレントトランスミッション間の干渉を軽減するために,ネットワークトポロジを活用してグラフニューラルネットワークアーキテクチャを構築する。
次に、教師なし原始対実対実最適化手法を用いて最適電力配分決定を学習する。
論文 参考訳(メタデータ) (2020-02-17T07:54:39Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。