CF-CGN: Channel Fingerprints Extrapolation for Multi-band Massive MIMO Transmission based on Cycle-Consistent Generative Networks
- URL: http://arxiv.org/abs/2412.20885v1
- Date: Mon, 30 Dec 2024 11:52:39 GMT
- Title: CF-CGN: Channel Fingerprints Extrapolation for Multi-band Massive MIMO Transmission based on Cycle-Consistent Generative Networks
- Authors: Chenjie Xie, Li You, Zhenzhou Jin, Jinke Tang, Xiqi Gao, Xiang-Gen Xia,
- Abstract summary: Multi-band massive multiple-input multiple-output (MIMO) communication can promote the cooperation of licensed and unlicensed spectra.<n>Channel fingerprints (CF) are used to assist channel state information (CSI) acquisition and reduce computational complexity.<n>We propose CF-CGN to extrapolate CF for multi-band massive MIMO transmission where licensed and unlicensed spectra cooperate to provide ubiquitous connectivity.
- Score: 26.720410416586677
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Multi-band massive multiple-input multiple-output (MIMO) communication can promote the cooperation of licensed and unlicensed spectra, effectively enhancing spectrum efficiency for Wi-Fi and other wireless systems. As an enabler for multi-band transmission, channel fingerprints (CF), also known as the channel knowledge map or radio environment map, are used to assist channel state information (CSI) acquisition and reduce computational complexity. In this paper, we propose CF-CGN (Channel Fingerprints with Cycle-consistent Generative Networks) to extrapolate CF for multi-band massive MIMO transmission where licensed and unlicensed spectra cooperate to provide ubiquitous connectivity. Specifically, we first model CF as a multichannel image and transform the extrapolation problem into an image translation task, which converts CF from one frequency to another by exploring the shared characteristics of statistical CSI in the beam domain. Then, paired generative networks are designed and coupled by variable-weight cycle consistency losses to fit the reciprocal relationship at different bands. Matched with the coupled networks, a joint training strategy is developed accordingly, supporting synchronous optimization of all trainable parameters. During the inference process, we also introduce a refining scheme to improve the extrapolation accuracy based on the resolution of CF. Numerical results illustrate that our proposed CF-CGN can achieve bidirectional extrapolation with an error of 5-17 dB lower than the benchmarks in different communication scenarios, demonstrating its excellent generalization ability. We further show that the sum rate performance assisted by CF-CGN-based CF is close to that with perfect CSI for multi-band massive MIMO transmission.
Related papers
- Communication-Efficient Federated Learning by Quantized Variance Reduction for Heterogeneous Wireless Edge Networks [55.467288506826755]
Federated learning (FL) has been recognized as a viable solution for local-privacy-aware collaborative model training in wireless edge networks.
Most existing communication-efficient FL algorithms fail to reduce the significant inter-device variance.
We propose a novel communication-efficient FL algorithm, named FedQVR, which relies on a sophisticated variance-reduced scheme.
arXiv Detail & Related papers (2025-01-20T04:26:21Z) - Performance Analysis for Resource Constrained Decentralized Federated
Learning Over Wireless Networks [4.76281731053599]
Decentralized federated learning (DFL) can lead to significant communication overhead and reliance on a central server.
This study analyzes the performance of resource-constrained DFL using different communication schemes (digital and analog) over wireless networks to optimize communication efficiency.
arXiv Detail & Related papers (2023-08-12T07:56:48Z) - Communication-Efficient Framework for Distributed Image Semantic
Wireless Transmission [68.69108124451263]
Federated learning-based semantic communication (FLSC) framework for multi-task distributed image transmission with IoT devices.
Each link is composed of a hierarchical vision transformer (HVT)-based extractor and a task-adaptive translator.
Channel state information-based multiple-input multiple-output transmission module designed to combat channel fading and noise.
arXiv Detail & Related papers (2023-08-07T16:32:14Z) - Hybrid Knowledge-Data Driven Channel Semantic Acquisition and
Beamforming for Cell-Free Massive MIMO [6.010360758759109]
This paper focuses on advancing outdoor wireless systems to better support ubiquitous extended reality (XR) applications.
We propose a hybrid knowledge-data driven method for channel semantic acquisition and multi-user beamforming in cell-free massive multiple-input multiple-output (MIMO) systems.
arXiv Detail & Related papers (2023-07-06T15:35:55Z) - Joint Channel Estimation and Feedback with Masked Token Transformers in
Massive MIMO Systems [74.52117784544758]
This paper proposes an encoder-decoder based network that unveils the intrinsic frequency-domain correlation within the CSI matrix.
The entire encoder-decoder network is utilized for channel compression.
Our method outperforms state-of-the-art channel estimation and feedback techniques in joint tasks.
arXiv Detail & Related papers (2023-06-08T06:15:17Z) - Multi-Flow Transmission in Wireless Interference Networks: A Convergent
Graph Learning Approach [9.852567834643292]
We introduce a novel algorithm called Dual-stage Interference-Aware Multi-flow Optimization of Network Data-signals (DIAMOND)
A centralized stage computes the multi-flow transmission strategy using a novel design of graph neural network (GNN) reinforcement learning (RL) routing agent.
Then, a distributed stage improves the performance based on a novel design of distributed learning updates.
arXiv Detail & Related papers (2023-03-27T18:49:47Z) - Multi-task Learning Approach for Modulation and Wireless Signal
Classification for 5G and Beyond: Edge Deployment via Model Compression [1.218340575383456]
Future communication networks must address the scarce spectrum to accommodate growth of heterogeneous wireless devices.
We exploit the potential of deep neural networks based multi-task learning framework to simultaneously learn modulation and signal classification tasks.
We provide a comprehensive heterogeneous wireless signals dataset for public use.
arXiv Detail & Related papers (2022-02-26T14:51:02Z) - Data-Driven Deep Learning Based Hybrid Beamforming for Aerial Massive
MIMO-OFDM Systems with Implicit CSI [29.11998008894847]
We propose a data-driven deep learning-based unified hybrid beamforming framework for time division duplex and frequency division duplex systems.
For TDD systems, the proposed DL-based approach jointly models the uplink pilot combining and downlink hybrid beamforming modules as an E2E neural network.
While for FDD systems, we jointly model the downlink pilot transmission, uplink CSI feedback, and downlink hybrid beamforming modules as an E2E neural network.
arXiv Detail & Related papers (2022-01-18T07:21:00Z) - Low-Latency Federated Learning over Wireless Channels with Differential
Privacy [142.5983499872664]
In federated learning (FL), model training is distributed over clients and local models are aggregated by a central server.
In this paper, we aim to minimize FL training delay over wireless channels, constrained by overall training performance as well as each client's differential privacy (DP) requirement.
arXiv Detail & Related papers (2021-06-20T13:51:18Z) - Deep Multimodal Fusion by Channel Exchanging [87.40768169300898]
This paper proposes a parameter-free multimodal fusion framework that dynamically exchanges channels between sub-networks of different modalities.
The validity of such exchanging process is also guaranteed by sharing convolutional filters yet keeping separate BN layers across modalities, which, as an add-on benefit, allows our multimodal architecture to be almost as compact as a unimodal network.
arXiv Detail & Related papers (2020-11-10T09:53:20Z) - Wireless Power Control via Counterfactual Optimization of Graph Neural
Networks [124.89036526192268]
We consider the problem of downlink power control in wireless networks, consisting of multiple transmitter-receiver pairs communicating over a single shared wireless medium.
To mitigate the interference among concurrent transmissions, we leverage the network topology to create a graph neural network architecture.
We then use an unsupervised primal-dual counterfactual optimization approach to learn optimal power allocation decisions.
arXiv Detail & Related papers (2020-02-17T07:54:39Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.