Multi-Flow Transmission in Wireless Interference Networks: A Convergent
Graph Learning Approach
- URL: http://arxiv.org/abs/2303.15544v2
- Date: Mon, 28 Aug 2023 18:38:12 GMT
- Title: Multi-Flow Transmission in Wireless Interference Networks: A Convergent
Graph Learning Approach
- Authors: Raz Paul, Kobi Cohen, Gil Kedar
- Abstract summary: We introduce a novel algorithm called Dual-stage Interference-Aware Multi-flow Optimization of Network Data-signals (DIAMOND)
A centralized stage computes the multi-flow transmission strategy using a novel design of graph neural network (GNN) reinforcement learning (RL) routing agent.
Then, a distributed stage improves the performance based on a novel design of distributed learning updates.
- Score: 9.852567834643292
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We consider the problem of of multi-flow transmission in wireless networks,
where data signals from different flows can interfere with each other due to
mutual interference between links along their routes, resulting in reduced link
capacities. The objective is to develop a multi-flow transmission strategy that
routes flows across the wireless interference network to maximize the network
utility. However, obtaining an optimal solution is computationally expensive
due to the large state and action spaces involved. To tackle this challenge, we
introduce a novel algorithm called Dual-stage Interference-Aware Multi-flow
Optimization of Network Data-signals (DIAMOND). The design of DIAMOND allows
for a hybrid centralized-distributed implementation, which is a characteristic
of 5G and beyond technologies with centralized unit deployments. A centralized
stage computes the multi-flow transmission strategy using a novel design of
graph neural network (GNN) reinforcement learning (RL) routing agent. Then, a
distributed stage improves the performance based on a novel design of
distributed learning updates. We provide a theoretical analysis of DIAMOND and
prove that it converges to the optimal multi-flow transmission strategy as time
increases. We also present extensive simulation results over various network
topologies (random deployment, NSFNET, GEANT2), demonstrating the superior
performance of DIAMOND compared to existing methods.
Related papers
- Improving the generalizability and robustness of large-scale traffic
signal control [3.8028221877086814]
We study the robustness of deep reinforcement-learning (RL) approaches to control traffic signals.
We show that recent methods remain brittle in the face of missing data.
We propose using a combination of distributional and vanilla reinforcement learning through a policy ensemble.
arXiv Detail & Related papers (2023-06-02T21:30:44Z) - Multi-agent Reinforcement Learning with Graph Q-Networks for Antenna
Tuning [60.94661435297309]
The scale of mobile networks makes it challenging to optimize antenna parameters using manual intervention or hand-engineered strategies.
We propose a new multi-agent reinforcement learning algorithm to optimize mobile network configurations globally.
We empirically demonstrate the performance of the algorithm on an antenna tilt tuning problem and a joint tilt and power control problem in a simulated environment.
arXiv Detail & Related papers (2023-01-20T17:06:34Z) - Over-the-Air Federated Learning via Second-Order Optimization [37.594140209854906]
Federated learning (FL) could result in task-oriented data traffic flows over wireless networks with limited radio resources.
We propose a novel over-the-air second-order federated optimization algorithm to simultaneously reduce the communication rounds and enable low-latency global model aggregation.
arXiv Detail & Related papers (2022-03-29T12:39:23Z) - Multi-task Learning Approach for Modulation and Wireless Signal
Classification for 5G and Beyond: Edge Deployment via Model Compression [1.218340575383456]
Future communication networks must address the scarce spectrum to accommodate growth of heterogeneous wireless devices.
We exploit the potential of deep neural networks based multi-task learning framework to simultaneously learn modulation and signal classification tasks.
We provide a comprehensive heterogeneous wireless signals dataset for public use.
arXiv Detail & Related papers (2022-02-26T14:51:02Z) - Learning Autonomy in Management of Wireless Random Networks [102.02142856863563]
This paper presents a machine learning strategy that tackles a distributed optimization task in a wireless network with an arbitrary number of randomly interconnected nodes.
We develop a flexible deep neural network formalism termed distributed message-passing neural network (DMPNN) with forward and backward computations independent of the network topology.
arXiv Detail & Related papers (2021-06-15T09:03:28Z) - Scalable Power Control/Beamforming in Heterogeneous Wireless Networks
with Graph Neural Networks [6.631773993784724]
We propose a novel unsupervised learning-based framework named heterogeneous interference graph neural network (HIGNN) to handle these challenges.
HIGNN is scalable to wireless networks of growing sizes with robust performance after trained on small-sized networks.
arXiv Detail & Related papers (2021-04-12T13:36:32Z) - Data-Driven Random Access Optimization in Multi-Cell IoT Networks with
NOMA [78.60275748518589]
Non-orthogonal multiple access (NOMA) is a key technology to enable massive machine type communications (mMTC) in 5G networks and beyond.
In this paper, NOMA is applied to improve the random access efficiency in high-density spatially-distributed multi-cell wireless IoT networks.
A novel formulation of random channel access management is proposed, in which the transmission probability of each IoT device is tuned to maximize the geometric mean of users' expected capacity.
arXiv Detail & Related papers (2021-01-02T15:21:08Z) - Deep Multi-Task Learning for Cooperative NOMA: System Design and
Principles [52.79089414630366]
We develop a novel deep cooperative NOMA scheme, drawing upon the recent advances in deep learning (DL)
We develop a novel hybrid-cascaded deep neural network (DNN) architecture such that the entire system can be optimized in a holistic manner.
arXiv Detail & Related papers (2020-07-27T12:38:37Z) - A Compressive Sensing Approach for Federated Learning over Massive MIMO
Communication Systems [82.2513703281725]
Federated learning is a privacy-preserving approach to train a global model at a central server by collaborating with wireless devices.
We present a compressive sensing approach for federated learning over massive multiple-input multiple-output communication systems.
arXiv Detail & Related papers (2020-03-18T05:56:27Z) - Wireless Power Control via Counterfactual Optimization of Graph Neural
Networks [124.89036526192268]
We consider the problem of downlink power control in wireless networks, consisting of multiple transmitter-receiver pairs communicating over a single shared wireless medium.
To mitigate the interference among concurrent transmissions, we leverage the network topology to create a graph neural network architecture.
We then use an unsupervised primal-dual counterfactual optimization approach to learn optimal power allocation decisions.
arXiv Detail & Related papers (2020-02-17T07:54:39Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.