QAHAN: A Quantum Annealing Hard Attention Network
- URL: http://arxiv.org/abs/2412.20930v1
- Date: Mon, 30 Dec 2024 13:21:16 GMT
- Title: QAHAN: A Quantum Annealing Hard Attention Network
- Authors: Ren-Xin Zhao,
- Abstract summary: Hard Attention Mechanisms (HAMs) effectively filter essential information discretely and significantly boost the performance of machine learning models on large datasets.
They confront the challenge of non-differentiability, which raises the risk of convergence to a local optimum.
We propose a Quantum Annealing Hard Attention Mechanism (QAHAM) for faster convergence to the global optimum.
- Score: 0.0
- License:
- Abstract: Hard Attention Mechanisms (HAMs) effectively filter essential information discretely and significantly boost the performance of machine learning models on large datasets. Nevertheless, they confront the challenge of non-differentiability, which raises the risk of convergence to a local optimum. Quantum Annealing (QA) is expected to solve the above dilemma. We propose a Quantum Annealing Hard Attention Mechanism (QAHAM) for faster convergence to the global optimum without the need to compute gradients by exploiting the quantum tunneling effect. Based on the above theory, we construct a Quantum Annealing Hard Attention Network (QAHAN) on D-Wave and Pytorch platforms for MNIST and CIFAR-10 multi-classification. Experimental results indicate that the QAHAN converges faster, exhibits smoother accuracy and loss curves, and demonstrates superior noise robustness compared to two traditional HAMs. Predictably, our scheme accelerates the convergence between the fields of quantum algorithms and machine learning, while advancing the field of quantum machine vision.
Related papers
- A learning agent-based approach to the characterization of open quantum systems [0.0]
We introduce the open Quantum Model Learning Agent (oQMLA) framework to account for Markovian noise through the Liouvillian formalism.
By simultaneously learning the Hamiltonian and jump operators, oQMLA independently captures both the coherent and incoherent dynamics of a system.
We validate our implementation in simulated scenarios of increasing complexity, demonstrating its robustness to hardware-induced measurement errors.
arXiv Detail & Related papers (2025-01-09T16:25:17Z) - GQHAN: A Grover-inspired Quantum Hard Attention Network [53.96779043113156]
Grover-inspired Quantum Hard Attention Mechanism (GQHAM) is proposed.
GQHAN adeptly surmounts the non-differentiability hurdle, surpassing the efficacy of extant quantum soft self-attention mechanisms.
The proposal of GQHAN lays the foundation for future quantum computers to process large-scale data, and promotes the development of quantum computer vision.
arXiv Detail & Related papers (2024-01-25T11:11:16Z) - Quantum benefit of the quantum equation of motion for the strongly
coupled many-body problem [0.0]
The quantum equation of motion (qEOM) is a hybrid quantum-classical algorithm for computing excitation properties of a fermionic many-body system.
We demonstrate explicitly that the qEOM exhibits a quantum benefit due to the independence of the number of required quantum measurements.
arXiv Detail & Related papers (2023-09-18T22:10:26Z) - Exploring Unsupervised Anomaly Detection with Quantum Boltzmann Machines
in Fraud Detection [3.955274213382716]
Anomaly detection in Restricted Detection and Response (EDR) is a critical task in cybersecurity programs of large companies.
Classical machine learning approaches to this problem exist, but they frequently show unsatisfactory performance in differentiating malicious from benign anomalies.
A promising approach to attain superior generalization than currently employed machine learning techniques are quantum generative models.
arXiv Detail & Related papers (2023-06-08T07:36:01Z) - Quantum Annealing for Single Image Super-Resolution [86.69338893753886]
We propose a quantum computing-based algorithm to solve the single image super-resolution (SISR) problem.
The proposed AQC-based algorithm is demonstrated to achieve improved speed-up over a classical analog while maintaining comparable SISR accuracy.
arXiv Detail & Related papers (2023-04-18T11:57:15Z) - QuanGCN: Noise-Adaptive Training for Robust Quantum Graph Convolutional
Networks [124.7972093110732]
We propose quantum graph convolutional networks (QuanGCN), which learns the local message passing among nodes with the sequence of crossing-gate quantum operations.
To mitigate the inherent noises from modern quantum devices, we apply sparse constraint to sparsify the nodes' connections.
Our QuanGCN is functionally comparable or even superior than the classical algorithms on several benchmark graph datasets.
arXiv Detail & Related papers (2022-11-09T21:43:16Z) - QSAN: A Near-term Achievable Quantum Self-Attention Network [73.15524926159702]
Self-Attention Mechanism (SAM) is good at capturing the internal connections of features.
A novel Quantum Self-Attention Network (QSAN) is proposed for image classification tasks on near-term quantum devices.
arXiv Detail & Related papers (2022-07-14T12:22:51Z) - Entangling Quantum Generative Adversarial Networks [53.25397072813582]
We propose a new type of architecture for quantum generative adversarial networks (entangling quantum GAN, EQ-GAN)
We show that EQ-GAN has additional robustness against coherent errors and demonstrate the effectiveness of EQ-GAN experimentally in a Google Sycamore superconducting quantum processor.
arXiv Detail & Related papers (2021-04-30T20:38:41Z) - Quantum circuit architecture search for variational quantum algorithms [88.71725630554758]
We propose a resource and runtime efficient scheme termed quantum architecture search (QAS)
QAS automatically seeks a near-optimal ansatz to balance benefits and side-effects brought by adding more noisy quantum gates.
We implement QAS on both the numerical simulator and real quantum hardware, via the IBM cloud, to accomplish data classification and quantum chemistry tasks.
arXiv Detail & Related papers (2020-10-20T12:06:27Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.