AlignAb: Pareto-Optimal Energy Alignment for Designing Nature-Like Antibodies
- URL: http://arxiv.org/abs/2412.20984v1
- Date: Mon, 30 Dec 2024 14:50:32 GMT
- Title: AlignAb: Pareto-Optimal Energy Alignment for Designing Nature-Like Antibodies
- Authors: Yibo Wen, Chenwei Xu, Jerry Yao-Chieh Hu, Han Liu,
- Abstract summary: We present a three-stage framework for training deep learning models specializing in antibody sequence-structure co-design.
We employ the learned representations to guide the training of a diffusion model for joint optimization over both sequence and structure of antibodies.
- Score: 4.679586996508103
- License:
- Abstract: We present a three-stage framework for training deep learning models specializing in antibody sequence-structure co-design. We first pre-train a language model using millions of antibody sequence data. Then, we employ the learned representations to guide the training of a diffusion model for joint optimization over both sequence and structure of antibodies. During the final alignment stage, we optimize the model to favor antibodies with low repulsion and high attraction to the antigen binding site, enhancing the rationality and functionality of the designs. To mitigate conflicting energy preferences, we extend AbDPO (Antibody Direct Preference Optimization) to guide the model towards Pareto optimality under multiple energy-based alignment objectives. Furthermore, we adopt an iterative learning paradigm with temperature scaling, enabling the model to benefit from diverse online datasets without requiring additional data. In practice, our proposed methods achieve high stability and efficiency in producing a better Pareto front of antibody designs compared to top samples generated by baselines and previous alignment techniques. Through extensive experiments, we showcase the superior performance of our methods in generating nature-like antibodies with high binding affinity consistently.
Related papers
- Refining Alignment Framework for Diffusion Models with Intermediate-Step Preference Ranking [50.325021634589596]
We propose a Tailored Optimization Preference (TailorPO) framework for aligning diffusion models with human preference.
Our approach directly ranks intermediate noisy samples based on their step-wise reward, and effectively resolves the gradient direction issues.
Experimental results demonstrate that our method significantly improves the model's ability to generate aesthetically pleasing and human-preferred images.
arXiv Detail & Related papers (2025-02-01T16:08:43Z) - Relation-Aware Equivariant Graph Networks for Epitope-Unknown Antibody Design and Specificity Optimization [61.06622479173572]
We propose a novel Relation-Aware Design (RAAD) framework, which models antigen-antibody interactions for co-designing sequences and structures of antigen-specific CDRs.
Furthermore, we propose a new evaluation metric to better measure antibody specificity and develop a contrasting specificity-enhancing constraint to optimize the specificity of antibodies.
arXiv Detail & Related papers (2024-12-14T03:00:44Z) - Retrieval Augmented Diffusion Model for Structure-informed Antibody Design and Optimization [8.546688995090491]
Antibodies are essential proteins responsible for immune responses in organisms.
Recent advances in generative models have significantly enhanced rational antibody design.
We propose a retrieval-augmented diffusion framework, termed RADAb, for efficient antibody design.
arXiv Detail & Related papers (2024-10-19T08:53:01Z) - Bridging Model-Based Optimization and Generative Modeling via Conservative Fine-Tuning of Diffusion Models [54.132297393662654]
We introduce a hybrid method that fine-tunes cutting-edge diffusion models by optimizing reward models through RL.
We demonstrate the capability of our approach to outperform the best designs in offline data, leveraging the extrapolation capabilities of reward models.
arXiv Detail & Related papers (2024-05-30T03:57:29Z) - Antigen-Specific Antibody Design via Direct Energy-based Preference Optimization [51.28231365213679]
We tackle antigen-specific antibody sequence-structure co-design as an optimization problem towards specific preferences.
We propose direct energy-based preference optimization to guide the generation of antibodies with both rational structures and considerable binding affinities to given antigens.
arXiv Detail & Related papers (2024-03-25T09:41:49Z) - Preference optimization of protein language models as a multi-objective
binder design paradigm [0.0]
We present a multi-objective binder design paradigm based on instruction fine-tuning and direct preference optimization.
We show the proposed alignment strategy enables ProtGPT2 to effectively design binders conditioned on specified receptors and a drug developability criterion.
arXiv Detail & Related papers (2024-03-07T03:36:03Z) - Inverse folding for antibody sequence design using deep learning [2.8998926117101367]
We propose a fine-tuned folding inverse model that is specifically optimised for antibody structures.
We study the canonical conformations of complementarity-determining regions and find improved encoding of these loops into known clusters.
arXiv Detail & Related papers (2023-10-30T13:12:41Z) - xTrimoABFold: De novo Antibody Structure Prediction without MSA [77.47606749555686]
We develop a novel model named xTrimoABFold to predict antibody structure from antibody sequence.
The model was trained end-to-end on the antibody structures in PDB by minimizing the ensemble loss of domain-specific focal loss on CDR and the frame-aligned point loss.
arXiv Detail & Related papers (2022-11-30T09:26:08Z) - Incorporating Pre-training Paradigm for Antibody Sequence-Structure
Co-design [134.65287929316673]
Deep learning-based computational antibody design has attracted popular attention since it automatically mines the antibody patterns from data that could be complementary to human experiences.
The computational methods heavily rely on high-quality antibody structure data, which is quite limited.
Fortunately, there exists a large amount of sequence data of antibodies that can help model the CDR and alleviate the reliance on structure data.
arXiv Detail & Related papers (2022-10-26T15:31:36Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.