論文の概要: E2EDiff: Direct Mapping from Noise to Data for Enhanced Diffusion Models
- arxiv url: http://arxiv.org/abs/2412.21044v1
- Date: Mon, 30 Dec 2024 16:06:31 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-12-31 22:07:02.81275
- Title: E2EDiff: Direct Mapping from Noise to Data for Enhanced Diffusion Models
- Title(参考訳): E2EDiff:拡張拡散モデルのためのノイズからデータへの直接マッピング
- Authors: Zhiyu Tan, WenXu Qian, Hesen Chen, Mengping Yang, Lei Chen, Hao Li,
- Abstract要約: 拡散モデルは生成モデリングの強力なフレームワークとして登場し、様々なタスクで最先端のパフォーマンスを実現している。
トレーニングサンプリングのギャップ、プログレッシブノイズ発生過程における情報漏洩、およびトレーニング中の知覚的および敵対的損失のような高度な損失関数を組み込むことができないことなど、いくつかの固有の制限に直面している。
本稿では,最終的な再構築出力を直接最適化することで,トレーニングとサンプリングのプロセスを整合させる,革新的なエンドツーエンドトレーニングフレームワークを提案する。
- 参考スコア(独自算出の注目度): 15.270657838960114
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Diffusion models have emerged as a powerful framework for generative modeling, achieving state-of-the-art performance across various tasks. However, they face several inherent limitations, including a training-sampling gap, information leakage in the progressive noising process, and the inability to incorporate advanced loss functions like perceptual and adversarial losses during training. To address these challenges, we propose an innovative end-to-end training framework that aligns the training and sampling processes by directly optimizing the final reconstruction output. Our method eliminates the training-sampling gap, mitigates information leakage by treating the training process as a direct mapping from pure noise to the target data distribution, and enables the integration of perceptual and adversarial losses into the objective. Extensive experiments on benchmarks such as COCO30K and HW30K demonstrate that our approach consistently outperforms traditional diffusion models, achieving superior results in terms of FID and CLIP score, even with reduced sampling steps. These findings highlight the potential of end-to-end training to advance diffusion-based generative models toward more robust and efficient solutions.
- Abstract(参考訳): 拡散モデルは生成モデリングの強力なフレームワークとして登場し、様々なタスクで最先端のパフォーマンスを実現している。
しかし、トレーニングサンプリングギャップ、プログレッシブノイズ発生過程における情報漏洩、およびトレーニング中の知覚的および敵対的損失のような高度な損失関数を組み込むことができないことなど、いくつかの固有の制限に直面している。
これらの課題に対処するために,最終的な再構築出力を直接最適化することにより,トレーニングとサンプリングのプロセスを整合させる,革新的なエンドツーエンドトレーニングフレームワークを提案する。
本手法は,トレーニング・サンプリングのギャップを解消し,学習過程を純雑音から対象データへの直接マッピングとして扱うことで情報漏洩を軽減し,知覚的・対角的損失を目標に組み込むことを可能とする。
COCO30KやHW30Kといったベンチマークの大規模な実験は、従来の拡散モデルよりも一貫して優れており、サンプリングステップを減らしてもFIDとCLIPスコアの点で優れた結果が得られることを示した。
これらの知見は、拡散に基づく生成モデルをより堅牢で効率的なソリューションに発展させるためのエンドツーエンドトレーニングの可能性を強調している。
関連論文リスト
- One-Step Diffusion Model for Image Motion-Deblurring [85.76149042561507]
本稿では,脱臭過程を1段階に短縮する新しいフレームワークである脱臭拡散モデル(OSDD)を提案する。
拡散モデルにおける忠実度損失に対処するために,構造復元を改善する改良された変分オートエンコーダ(eVAE)を導入する。
提案手法は,実測値と非参照値の両方で高い性能を達成する。
論文 参考訳(メタデータ) (2025-03-09T09:39:57Z) - Aligning Few-Step Diffusion Models with Dense Reward Difference Learning [81.85515625591884]
Stepwise Diffusion Policy Optimization (SDPO) は、数ステップの拡散モデルに適したアライメント手法である。
SDPOは、すべての中間ステップに密集した報酬フィードバックを組み込んで、すべてのデノナイジングステップを一貫したアライメントを確保する。
SDPOは、様々なステップ構成にまたがる報酬ベースのアライメントにおいて、従来手法よりも一貫して優れています。
論文 参考訳(メタデータ) (2024-11-18T16:57:41Z) - FIND: Fine-tuning Initial Noise Distribution with Policy Optimization for Diffusion Models [10.969811500333755]
本稿では,FIND(Fincent-tuning Initial Noise Distribution)フレームワークのポリシー最適化について紹介する。
提案手法はSOTA法よりも10倍高速である。
論文 参考訳(メタデータ) (2024-07-28T10:07:55Z) - Iterative Ensemble Training with Anti-Gradient Control for Mitigating Memorization in Diffusion Models [20.550324116099357]
拡散モデルは、新規で高品質なサンプルを生成できることで知られている。
最近のメモリ緩和手法は、クロスモーダル生成タスクにおけるテキストモダリティ問題にのみ焦点をあてるか、あるいはデータ拡張戦略を利用するかのどちらかである。
本稿では,視覚的モダリティの観点からの拡散モデルのための新しいトレーニングフレームワークを提案する。
論文 参考訳(メタデータ) (2024-07-22T02:19:30Z) - Model Inversion Attacks Through Target-Specific Conditional Diffusion Models [54.69008212790426]
モデル反転攻撃(MIA)は、ターゲット分類器のトレーニングセットからプライベートイメージを再構築することを目的としており、それによってAIアプリケーションにおけるプライバシー上の懸念が高まる。
従来のGANベースのMIAは、GANの固有の欠陥と潜伏空間における最適化の偏りにより、劣った遺伝子的忠実度に悩まされる傾向にある。
これらの問題を緩和するために拡散モデル反転(Diff-MI)攻撃を提案する。
論文 参考訳(メタデータ) (2024-07-16T06:38:49Z) - Adv-KD: Adversarial Knowledge Distillation for Faster Diffusion Sampling [2.91204440475204]
拡散確率モデル(DPM)は、深層生成モデルの強力なクラスとして登場した。
それらは、サンプル生成中にシーケンシャルなデノイングステップに依存している。
モデルアーキテクチャに直接位相を分解する新しい手法を提案する。
論文 参考訳(メタデータ) (2024-05-31T08:19:44Z) - Imagine Flash: Accelerating Emu Diffusion Models with Backward Distillation [18.371344440413353]
本研究では,1段階から3段階の高忠実度,多種多様な試料生成を可能にする新しい蒸留フレームワークを提案する。
提案手法は, (i) 学習者自身の後方軌跡を校正することで, トレーニングと推論の相違を緩和する後方蒸留, (ii) 知識伝達を動的に適応させるシフト型再構成損失, (iii) サンプル品質を高める推論時間技術であるノイズ補正の3つの重要な要素から構成される。
論文 参考訳(メタデータ) (2024-05-08T17:15:18Z) - Model Will Tell: Training Membership Inference for Diffusion Models [15.16244745642374]
トレーニングメンバーシップ推論(TMI)タスクは、ターゲットモデルのトレーニングプロセスで特定のサンプルが使用されているかどうかを判断することを目的としている。
本稿では,拡散モデル内における本質的な生成先行情報を活用することで,TMIタスクの新たな視点を探求する。
論文 参考訳(メタデータ) (2024-03-13T12:52:37Z) - Take the Bull by the Horns: Hard Sample-Reweighted Continual Training
Improves LLM Generalization [165.98557106089777]
大きな言語モデル(LLM)の能力を高めることが大きな課題だ。
本研究は,従来の事前学習データセットを用いたLCMの光連続訓練に関する実証的戦略から始まった。
次に、この戦略をインスタンス重み付け分散ロバスト最適化の原則化されたフレームワークに定式化します。
論文 参考訳(メタデータ) (2024-02-22T04:10:57Z) - Learn to Optimize Denoising Scores for 3D Generation: A Unified and
Improved Diffusion Prior on NeRF and 3D Gaussian Splatting [60.393072253444934]
本稿では,3次元生成タスクの拡散先行性向上を目的とした統合フレームワークを提案する。
拡散先行と拡散モデルの訓練手順の相違を同定し、3次元生成の質を著しく損なう。
論文 参考訳(メタデータ) (2023-12-08T03:55:34Z) - Two-Stage Triplet Loss Training with Curriculum Augmentation for
Audio-Visual Retrieval [3.164991885881342]
クロス検索モデルは堅牢な埋め込み空間を学習する。
この問題に対処するために,カリキュラム学習に根ざした新しいアプローチを導入する。
本稿では,モデルの学習過程をセミハードからハードトリップにガイドする2段階の学習パラダイムを提案する。
論文 参考訳(メタデータ) (2023-10-20T12:35:54Z) - Diffusion Model for Dense Matching [34.13580888014]
ペア画像間の密接な対応を確立する目的は、データ項と先行項の2つの項からなる。
我々はDiffMatchを提案する。DiffMatchは、データと事前条件の両方を明示的にモデル化する新しい条件付き拡散ベースのフレームワークである。
実験の結果,既存の手法に比べて,提案手法の大幅な性能向上が示された。
論文 参考訳(メタデータ) (2023-05-30T14:58:24Z) - End-to-End Meta-Bayesian Optimisation with Transformer Neural Processes [52.818579746354665]
本稿では,ニューラルネットワークを一般化し,トランスフォーマーアーキテクチャを用いて獲得関数を学習する,エンド・ツー・エンドの差別化可能な最初のメタBOフレームワークを提案する。
我々は、この強化学習(RL)によるエンドツーエンドのフレームワークを、ラベル付き取得データの欠如に対処できるようにします。
論文 参考訳(メタデータ) (2023-05-25T10:58:46Z) - Exploiting Diffusion Prior for Real-World Image Super-Resolution [75.5898357277047]
本稿では,事前学習したテキスト・画像拡散モデルにカプセル化された事前知識を視覚的超解像に活用するための新しいアプローチを提案する。
時間認識エンコーダを用いることで、事前学習した合成モデルを変更することなく、有望な復元結果が得られる。
論文 参考訳(メタデータ) (2023-05-11T17:55:25Z) - Conditional Denoising Diffusion for Sequential Recommendation [62.127862728308045]
GAN(Generative Adversarial Networks)とVAE(VAE)の2つの顕著な生成モデル
GANは不安定な最適化に苦しむ一方、VAEは後続の崩壊と過度に平らな世代である。
本稿では,シーケンスエンコーダ,クロスアテンティブデノナイジングデコーダ,ステップワイズディフューザを含む条件付きデノナイジング拡散モデルを提案する。
論文 参考訳(メタデータ) (2023-04-22T15:32:59Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。