論文の概要: E2EDiff: Direct Mapping from Noise to Data for Enhanced Diffusion Models
- arxiv url: http://arxiv.org/abs/2412.21044v1
- Date: Mon, 30 Dec 2024 16:06:31 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-12-31 16:05:59.181079
- Title: E2EDiff: Direct Mapping from Noise to Data for Enhanced Diffusion Models
- Title(参考訳): E2EDiff:拡張拡散モデルのためのノイズからデータへの直接マッピング
- Authors: Zhiyu Tan, WenXu Qian, Hesen Chen, Mengping Yang, Lei Chen, Hao Li,
- Abstract要約: 拡散モデルは生成モデリングの強力なフレームワークとして登場し、様々なタスクで最先端のパフォーマンスを実現している。
トレーニングサンプリングのギャップ、プログレッシブノイズ発生過程における情報漏洩、およびトレーニング中の知覚的および敵対的損失のような高度な損失関数を組み込むことができないことなど、いくつかの固有の制限に直面している。
本稿では,最終的な再構築出力を直接最適化することで,トレーニングとサンプリングのプロセスを整合させる,革新的なエンドツーエンドトレーニングフレームワークを提案する。
- 参考スコア(独自算出の注目度): 15.270657838960114
- License:
- Abstract: Diffusion models have emerged as a powerful framework for generative modeling, achieving state-of-the-art performance across various tasks. However, they face several inherent limitations, including a training-sampling gap, information leakage in the progressive noising process, and the inability to incorporate advanced loss functions like perceptual and adversarial losses during training. To address these challenges, we propose an innovative end-to-end training framework that aligns the training and sampling processes by directly optimizing the final reconstruction output. Our method eliminates the training-sampling gap, mitigates information leakage by treating the training process as a direct mapping from pure noise to the target data distribution, and enables the integration of perceptual and adversarial losses into the objective. Extensive experiments on benchmarks such as COCO30K and HW30K demonstrate that our approach consistently outperforms traditional diffusion models, achieving superior results in terms of FID and CLIP score, even with reduced sampling steps. These findings highlight the potential of end-to-end training to advance diffusion-based generative models toward more robust and efficient solutions.
- Abstract(参考訳): 拡散モデルは生成モデリングの強力なフレームワークとして登場し、様々なタスクで最先端のパフォーマンスを実現している。
しかし、トレーニングサンプリングギャップ、プログレッシブノイズ発生過程における情報漏洩、およびトレーニング中の知覚的および敵対的損失のような高度な損失関数を組み込むことができないことなど、いくつかの固有の制限に直面している。
これらの課題に対処するために,最終的な再構築出力を直接最適化することにより,トレーニングとサンプリングのプロセスを整合させる,革新的なエンドツーエンドトレーニングフレームワークを提案する。
本手法は,トレーニング・サンプリングのギャップを解消し,学習過程を純雑音から対象データへの直接マッピングとして扱うことで情報漏洩を軽減し,知覚的・対角的損失を目標に組み込むことを可能とする。
COCO30KやHW30Kといったベンチマークの大規模な実験は、従来の拡散モデルよりも一貫して優れており、サンプリングステップを減らしてもFIDとCLIPスコアの点で優れた結果が得られることを示した。
これらの知見は、拡散に基づく生成モデルをより堅牢で効率的なソリューションに発展させるためのエンドツーエンドトレーニングの可能性を強調している。
関連論文リスト
- Representation Alignment for Generation: Training Diffusion Transformers Is Easier Than You Think [72.48325960659822]
生成のための大規模拡散モデルの訓練における主要なボトルネックは、これらの表現を効果的に学習することにある。
本稿では,RePresentation Alignment (REPA) と呼ばれる単純な正規化を導入し,ノイズの多い入力隠れ状態の投影を,外部の事前学習された視覚エンコーダから得られるクリーンな画像表現と整合させる手法を提案する。
我々の単純な戦略は、一般的な拡散やDiTsやSiTsといったフローベースのトランスフォーマーに適用した場合、トレーニング効率と生成品質の両方に大きな改善をもたらす。
論文 参考訳(メタデータ) (2024-10-09T14:34:53Z) - Iterative Ensemble Training with Anti-Gradient Control for Mitigating Memorization in Diffusion Models [20.550324116099357]
拡散モデルは、新規で高品質なサンプルを生成できることで知られている。
最近のメモリ緩和手法は、クロスモーダル生成タスクにおけるテキストモダリティ問題にのみ焦点をあてるか、あるいはデータ拡張戦略を利用するかのどちらかである。
本稿では,視覚的モダリティの観点からの拡散モデルのための新しいトレーニングフレームワークを提案する。
論文 参考訳(メタデータ) (2024-07-22T02:19:30Z) - Adv-KD: Adversarial Knowledge Distillation for Faster Diffusion Sampling [2.91204440475204]
拡散確率モデル(DPM)は、深層生成モデルの強力なクラスとして登場した。
それらは、サンプル生成中にシーケンシャルなデノイングステップに依存している。
モデルアーキテクチャに直接位相を分解する新しい手法を提案する。
論文 参考訳(メタデータ) (2024-05-31T08:19:44Z) - Model Will Tell: Training Membership Inference for Diffusion Models [15.16244745642374]
トレーニングメンバーシップ推論(TMI)タスクは、ターゲットモデルのトレーニングプロセスで特定のサンプルが使用されているかどうかを判断することを目的としている。
本稿では,拡散モデル内における本質的な生成先行情報を活用することで,TMIタスクの新たな視点を探求する。
論文 参考訳(メタデータ) (2024-03-13T12:52:37Z) - Take the Bull by the Horns: Hard Sample-Reweighted Continual Training
Improves LLM Generalization [165.98557106089777]
大きな言語モデル(LLM)の能力を高めることが大きな課題だ。
本研究は,従来の事前学習データセットを用いたLCMの光連続訓練に関する実証的戦略から始まった。
次に、この戦略をインスタンス重み付け分散ロバスト最適化の原則化されたフレームワークに定式化します。
論文 参考訳(メタデータ) (2024-02-22T04:10:57Z) - Adaptive Training Meets Progressive Scaling: Elevating Efficiency in Diffusion Models [52.1809084559048]
TDCトレーニングと呼ばれる新しい2段階分割型トレーニング戦略を提案する。
タスクの類似性と難易度に基づいてタイムステップをグループ化し、高度にカスタマイズされた復調モデルを各グループに割り当て、拡散モデルの性能を向上させる。
2段階のトレーニングでは、各モデルを個別にトレーニングする必要がなくなるが、総トレーニングコストは、単一の統合されたデノナイジングモデルをトレーニングするよりもさらに低い。
論文 参考訳(メタデータ) (2023-12-20T03:32:58Z) - BOOT: Data-free Distillation of Denoising Diffusion Models with
Bootstrapping [64.54271680071373]
拡散モデルは多様な画像を生成する優れた可能性を示している。
知識蒸留は、推論ステップの数を1つか数に減らすための治療法として最近提案されている。
本稿では,効率的なデータフリー蒸留アルゴリズムにより限界を克服するBOOTと呼ばれる新しい手法を提案する。
論文 参考訳(メタデータ) (2023-06-08T20:30:55Z) - Exploiting Diffusion Prior for Real-World Image Super-Resolution [75.5898357277047]
本稿では,事前学習したテキスト・画像拡散モデルにカプセル化された事前知識を視覚的超解像に活用するための新しいアプローチを提案する。
時間認識エンコーダを用いることで、事前学習した合成モデルを変更することなく、有望な復元結果が得られる。
論文 参考訳(メタデータ) (2023-05-11T17:55:25Z) - Reflected Diffusion Models [93.26107023470979]
本稿では,データのサポートに基づいて進化する反射微分方程式を逆転する反射拡散モデルを提案する。
提案手法は,一般化されたスコアマッチング損失を用いてスコア関数を学習し,標準拡散モデルの主要成分を拡張する。
論文 参考訳(メタデータ) (2023-04-10T17:54:38Z) - Restoration based Generative Models [0.886014926770622]
デノイング拡散モデル(DDM)は、印象的な合成品質を示すことで注目を集めている。
本稿では、画像復元(IR)の観点からDDMの解釈を確立する。
本稿では,前処理の柔軟性を生かして,拡散過程と比較して性能を向上するマルチスケールトレーニングを提案する。
われわれのフレームワークは、新しいタイプのフレキシブル・ジェネラル・ジェネラル・ジェネレーティブ・モデルの設計の道を開いたと信じている。
論文 参考訳(メタデータ) (2023-02-20T00:53:33Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。