論文の概要: On the Generalizability of Machine Learning-based Ransomware Detection in Block Storage
- arxiv url: http://arxiv.org/abs/2412.21084v1
- Date: Mon, 30 Dec 2024 17:02:37 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-12-31 16:01:09.219956
- Title: On the Generalizability of Machine Learning-based Ransomware Detection in Block Storage
- Title(参考訳): ブロックストレージにおける機械学習に基づくランサムウェア検出の一般化可能性について
- Authors: Nicolas Reategui, Roman Pletka, Dionysios Diamantopoulos,
- Abstract要約: ランサムウェアの活動を特定するためのIO操作を効率的に抽出・解析できるカーネルベースのフレームワークを提案する。
本手法では,MLモデルに最適化された計算軽量な特徴群を用いて,悪質な活動から悪質な活動を正確に識別する。
経験的検証により,決定木に基づくモデルが極めて有効であることが判明した。
- 参考スコア(独自算出の注目度): 0.0
- License:
- Abstract: Ransomware represents a pervasive threat, traditionally countered at the operating system, file-system, or network levels. However, these approaches often introduce significant overhead and remain susceptible to circumvention by attackers. Recent research activity started looking into the detection of ransomware by observing block IO operations. However, this approach exhibits significant detection challenges. Recognizing these limitations, our research pivots towards enabling robust ransomware detection in storage systems keeping in mind their limited computational resources available. To perform our studies, we propose a kernel-based framework capable of efficiently extracting and analyzing IO operations to identify ransomware activity. The framework can be adopted to storage systems using computational storage devices to improve security and fully hide detection overheads. Our method employs a refined set of computationally light features optimized for ML models to accurately discern malicious from benign activities. Using this lightweight approach, we study a wide range of generalizability aspects and analyze the performance of these models across a large space of setups and configurations covering a wide range of realistic real-world scenarios. We reveal various trade-offs and provide strong arguments for the generalizability of storage-based detection of ransomware and show that our approach outperforms currently available ML-based ransomware detection in storage. Empirical validation reveals that our decision tree-based models achieve remarkable effectiveness, evidenced by higher median F1 scores of up to 12.8%, lower false negative rates of up to 10.9% and particularly decreased false positive rates of up to 17.1% compared to existing storage-based detection approaches.
- Abstract(参考訳): ランサムウェアは広範にわたる脅威であり、伝統的にオペレーティングシステム、ファイルシステム、ネットワークレベルで対抗している。
しかし、これらのアプローチは大きなオーバーヘッドを伴い、攻撃者による回避に苦しむことも多い。
最近の研究活動は、ブロックIO操作を観察してランサムウェアの検出を調査し始めた。
しかし、このアプローチは重要な検出課題を示す。
これらの制約を認識しながら、我々の研究は、利用可能な限られた計算資源を念頭に置いて、ストレージシステムにおける堅牢なランサムウェア検出を可能にすることを目指しています。
そこで本研究では,ランサムウェアの活動を特定するためのIO操作を効率的に抽出・解析できるカーネルベースのフレームワークを提案する。
このフレームワークは、計算ストレージデバイスを使用してストレージシステムに適用することで、セキュリティを改善し、検出オーバーヘッドを完全に隠蔽することができる。
本手法では,MLモデルに最適化された計算軽量な特徴群を用いて,悪質な活動から悪質な活動を正確に識別する。
この軽量なアプローチを用いて、広範にわたる一般化可能性の側面を調査し、これらのモデルの性能を、幅広い現実的な実世界のシナリオをカバーする大規模なセットアップと構成の空間にわたって分析する。
我々は,さまざまなトレードオフを明らかにし,ストレージベースのランサムウェア検出の一般化可能性について強く論じるとともに,現在利用可能なMLベースのランサムウェア検出よりも優れていることを示す。
実証的検証により、我々の決定木に基づくモデルは、F1スコアの中央値が最大12.8%、偽陰性率が最大10.9%、特に偽陽性率が最大17.1%低下していることが証明された。
関連論文リスト
- Decentralized Entropy-Driven Ransomware Detection Using Autonomous Neural Graph Embeddings [0.0]
このフレームワークはノードの分散ネットワークで動作し、単一障害点を排除し、ターゲット攻撃に対するレジリエンスを強化する。
グラフベースのモデリングと機械学習技術の統合により、このフレームワークは複雑なシステムインタラクションをキャプチャできる。
ケーススタディでは、実世界のシナリオでの有効性を検証するとともに、ランサムウェア攻撃を開始後数分で検出し軽減する能力を示している。
論文 参考訳(メタデータ) (2025-02-11T11:59:10Z) - Efficient Denial of Service Attack Detection in IoT using Kolmogorov-Arnold Networks [22.036794530902608]
本稿では,KAN(Kolmogorov-Arnold Networks)に基づくDoS攻撃検出の新しい軽量アプローチを提案する。
Kanは、最小限のリソース要件を維持しながら、最先端の検知性能を達成する。
既存のソリューションと比較して、kanは競合検出率を維持しながら、メモリ要求を最大98%削減する。
論文 参考訳(メタデータ) (2025-02-03T21:19:46Z) - Unveiling Zero-Space Detection: A Novel Framework for Autonomous Ransomware Identification in High-Velocity Environments [0.0]
提案したZero-Space Detectionフレームワークは、教師なしクラスタリングと高度なディープラーニング技術により、潜時行動パターンを識別する。
高速度環境では多相フィルタリングとアンサンブル学習を統合して効率的な意思決定を行う。
実験的評価では、LockBit、Conti、Revil、BlackMatterなど、さまざまなランサムウェアファミリー間で高い検出率を示している。
論文 参考訳(メタデータ) (2025-01-22T11:41:44Z) - A Sysmon Incremental Learning System for Ransomware Analysis and Detection [1.495391051525033]
サイバー脅威、特にランサムウェア攻撃の増加に直面しているため、高度な検知と分析システムの必要性が高まっている。
これらの提案のほとんどは、新しいランサムウェアを検出するために、基礎となるモデルをスクラッチから更新する必要がある、非インクリメンタルな学習アプローチを活用している。
新たなランサムウェア株がモデルが更新されるまで検出されない可能性があるため、再トレーニング中に攻撃に対して脆弱なデータを残すため、このアプローチは問題となる。
本稿では,Sysmon Incremental Learning System for Analysis and Detection (SILRAD)を提案する。
論文 参考訳(メタデータ) (2025-01-02T06:22:58Z) - Ransomware Detection and Classification Using Random Forest: A Case Study with the UGRansome2024 Dataset [0.0]
ネットワークトラフィックにおけるランサムウェア検出のための最適化データセットであるUGRansome2024を紹介する。
このデータセットは直観主義的特徴工学アプローチを用いてUGRansomeデータから導かれる。
本研究では,UGRansome2024データセットとランダムフォレストアルゴリズムを用いてランサムウェア検出を行う。
論文 参考訳(メタデータ) (2024-04-19T12:50:03Z) - Model X-ray:Detecting Backdoored Models via Decision Boundary [62.675297418960355]
バックドア攻撃はディープニューラルネットワーク(DNN)に重大な脆弱性をもたらす
図形化された2次元(2次元)決定境界の解析に基づく新しいバックドア検出手法であるモデルX線を提案する。
提案手法は,クリーンサンプルが支配する意思決定領域とラベル分布の集中度に着目した2つの戦略を含む。
論文 参考訳(メタデータ) (2024-02-27T12:42:07Z) - DRSM: De-Randomized Smoothing on Malware Classifier Providing Certified
Robustness [58.23214712926585]
我々は,マルウェア検出領域の非ランダム化スムース化技術を再設計し,DRSM(De-Randomized Smoothed MalConv)を開発した。
具体的には,実行可能ファイルの局所構造を最大に保ちながら,逆数バイトの影響を確実に抑制するウィンドウアブレーション方式を提案する。
私たちは、マルウェア実行ファイルの静的検出という領域で、認証された堅牢性を提供する最初の人です。
論文 参考訳(メタデータ) (2023-03-20T17:25:22Z) - Detection of Adversarial Supports in Few-shot Classifiers Using Feature
Preserving Autoencoders and Self-Similarity [89.26308254637702]
敵対的なサポートセットを強調するための検出戦略を提案する。
我々は,特徴保存型オートエンコーダフィルタリングと,この検出を行うサポートセットの自己相似性の概念を利用する。
提案手法は攻撃非依存であり, 最善の知識まで, 数発分類器の検出を探索する最初の方法である。
論文 参考訳(メタデータ) (2020-12-09T14:13:41Z) - Adversarial EXEmples: A Survey and Experimental Evaluation of Practical
Attacks on Machine Learning for Windows Malware Detection [67.53296659361598]
EXEmplesは、比較的少ない入力バイトを摂動することで、機械学習に基づく検出をバイパスすることができる。
我々は、機械学習モデルに対する過去の攻撃を包含し、一般化するだけでなく、3つの新たな攻撃を含む統一フレームワークを開発する。
これらの攻撃はFull DOS、Extended、Shiftと呼ばれ、DOSヘッダをそれぞれ操作し、拡張し、第1セクションの内容を変更することで、敵のペイロードを注入する。
論文 参考訳(メタデータ) (2020-08-17T07:16:57Z) - Bayesian Optimization with Machine Learning Algorithms Towards Anomaly
Detection [66.05992706105224]
本稿では,ベイズ最適化手法を用いた効果的な異常検出フレームワークを提案する。
ISCX 2012データセットを用いて検討したアルゴリズムの性能を評価する。
実験結果から, 精度, 精度, 低コストアラームレート, リコールの観点から, 提案手法の有効性が示された。
論文 参考訳(メタデータ) (2020-08-05T19:29:35Z) - AutoOD: Automated Outlier Detection via Curiosity-guided Search and
Self-imitation Learning [72.99415402575886]
外乱検出は重要なデータマイニングの課題であり、多くの実用的応用がある。
本稿では,最適なニューラルネットワークモデルを探すことを目的とした自動外乱検出フレームワークであるAutoODを提案する。
さまざまな実世界のベンチマークデータセットに対する実験結果から、AutoODが特定したディープモデルが最高のパフォーマンスを達成することが示された。
論文 参考訳(メタデータ) (2020-06-19T18:57:51Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。