Quantum tunneling and its absence in deep wells and strong magnetic fields
- URL: http://arxiv.org/abs/2412.21100v2
- Date: Tue, 31 Dec 2024 05:55:21 GMT
- Title: Quantum tunneling and its absence in deep wells and strong magnetic fields
- Authors: Charles L. Fefferman, Jacob Shapiro, Michael I. Weinstein,
- Abstract summary: We construct a family of double well potentials containing examples for which the low-energy eigenvalue splitting vanishes.
By deforming within this family, the magnetic ground state can be made to transition from symmetric to anti-symmetric.
- Score: 0.0
- License:
- Abstract: We present new results on quantum tunneling between deep potential wells, in the presence of a strong constant magnetic field. We construct a family of double well potentials containing examples for which the low-energy eigenvalue splitting vanishes, and hence quantum tunneling is eliminated. Further, by deforming within this family, the magnetic ground state can be made to transition from symmetric to anti-symmetric. However, for typical double wells in a certain regime, tunneling is not suppressed, and we provide a lower bound for the eigenvalue splitting.
Related papers
- Crossing exceptional points in non-Hermitian quantum systems [41.94295877935867]
We reveal the behavior of two-photon quantum states in non-Hermitian systems across the exceptional point.
We demonstrate a switching in the quantum interference of photons directly at the exceptional point.
arXiv Detail & Related papers (2024-07-17T14:04:00Z) - Long-range interactions in Weyl dense atomic arrays protected from dissipation and disorder [41.94295877935867]
Long-range interactions are a key resource in many quantum phenomena and technologies.
We show how to design the polaritonic bands of these atomic metamaterials to feature a pair of frequency-isolated Weyl points.
These Weyl excitations can thus mediate interactions that are simultaneously long-range, due to their gapless nature; robust, due to the topological protection of Weyl points; and decoherence-free, due to their subradiant character.
arXiv Detail & Related papers (2024-06-18T20:15:16Z) - Edge modes and symmetry-protected topological states in open quantum
systems [0.0]
Topological order offers possibilities for processing quantum information which can be immune to imperfections.
We show robustness of certain aspects of $ZZtimes Z$ symmetry-protected trajectory (SPT) order against a wide class of dissipation channels.
Our work thus proposes a novel framework to study the dynamics of dissipative SPT phases.
arXiv Detail & Related papers (2023-10-13T21:09:52Z) - Fermion-parity qubit in a proximitized double quantum dot [0.0]
We encode quantum information in the local fermion parity of two tunnel-coupled quantum dots embedded in a Josephson junction.
At the sweet spot, the qubit states have zero charge dipole moment.
This protects the qubit from dephasing due to charge noise acting on the potential of each dot, as well as fluctuations of the (weak) inter-dot tunneling.
arXiv Detail & Related papers (2023-07-11T18:00:03Z) - Magnetic-field-induced cavity protection for intersubband polaritons [52.77024349608834]
We analyse the effect of a strong perpendicular magnetic field on an intersubband transition in a disordered doped quantum well strongly coupled to an optical cavity.
The magnetic field changes the lineshape of the intersubband optical transition due to the roughness of the interface of the quantum well from a Lorentzian to a Gaussian one.
arXiv Detail & Related papers (2022-10-14T18:00:03Z) - Noise-resilient Edge Modes on a Chain of Superconducting Qubits [103.93329374521808]
Inherent symmetry of a quantum system may protect its otherwise fragile states.
We implement the one-dimensional kicked Ising model which exhibits non-local Majorana edge modes (MEMs) with $mathbbZ$ parity symmetry.
MEMs are found to be resilient against certain symmetry-breaking noise owing to a prethermalization mechanism.
arXiv Detail & Related papers (2022-04-24T22:34:15Z) - A strain-engineered graphene qubit in a nanobubble [0.0]
We propose a controllable qubit in a graphene nanobubble with emergent two-level systems induced by pseudo-magnetic fields.
We found that double quantum dots can be created by the strain-induced pseudo-magnetic fields of a nanobubble, and that their quantum states can be manipulated by either local gate potentials or the pseudo-magnetic fields.
arXiv Detail & Related papers (2021-11-24T03:29:24Z) - Dipole blockade without dipole-dipole interaction [3.6245152174496416]
We propose a novel physical mechanism for realizing dipole blockade without the dipole-dipole interaction.
Two qubits coupled to a cavity are driven by a coherent field.
We show that these two qubits are strongly entangled over a broad regime of the system parameters.
arXiv Detail & Related papers (2021-06-21T17:12:55Z) - Chemical tuning of spin clock transitions in molecular monomers based on
nuclear spin-free Ni(II) [52.259804540075514]
We report the existence of a sizeable quantum tunnelling splitting between the two lowest electronic spin levels of mononuclear Ni complexes.
The level anti-crossing, or magnetic clock transition, associated with this gap has been directly monitored by heat capacity experiments.
The comparison of these results with those obtained for a Co derivative, for which tunnelling is forbidden by symmetry, shows that the clock transition leads to an effective suppression of intermolecular spin-spin interactions.
arXiv Detail & Related papers (2021-03-04T13:31:40Z) - Probing the coherence of solid-state qubits at avoided crossings [51.805457601192614]
We study the quantum dynamics of paramagnetic defects interacting with a nuclear spin bath at avoided crossings.
The proposed theoretical approach paves the way to designing the coherence properties of spin qubits from first principles.
arXiv Detail & Related papers (2020-10-21T15:37:59Z) - Lower Bound on Quantum Tunneling for Strong Magnetic Fields [0.0]
We consider a particle bound to a two-dimensional plane and a double well potential, subject to a perpendicular uniform magnetic field.
We obtain upper and lower bounds on this splitting in the regime where both the magnetic field strength and the depth of the wells are large.
arXiv Detail & Related papers (2020-06-14T21:12:03Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.