論文の概要: What Makes for a Good Stereoscopic Image?
- arxiv url: http://arxiv.org/abs/2412.21127v1
- Date: Mon, 30 Dec 2024 17:58:50 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-12-31 16:05:56.003775
- Title: What Makes for a Good Stereoscopic Image?
- Title(参考訳): 立体画像に何をもたらすのか?
- Authors: Netanel Y. Tamir, Shir Amir, Ranel Itzhaky, Noam Atia, Shobhita Sundaram, Stephanie Fu, Ron Sokolovsky, Phillip Isola, Tali Dekel, Richard Zhang, Miriam Farber,
- Abstract要約: SCOPEは,多種多様な知覚歪みと人工物を含む実画像と合成立体画像からなる新しいデータセットである。
また、データセット上でトレーニングされた経験評価のステレオ品質のための新しいモデルiSQoEを提案する。
- 参考スコア(独自算出の注目度): 34.13972770089699
- License:
- Abstract: With rapid advancements in virtual reality (VR) headsets, effectively measuring stereoscopic quality of experience (SQoE) has become essential for delivering immersive and comfortable 3D experiences. However, most existing stereo metrics focus on isolated aspects of the viewing experience such as visual discomfort or image quality, and have traditionally faced data limitations. To address these gaps, we present SCOPE (Stereoscopic COntent Preference Evaluation), a new dataset comprised of real and synthetic stereoscopic images featuring a wide range of common perceptual distortions and artifacts. The dataset is labeled with preference annotations collected on a VR headset, with our findings indicating a notable degree of consistency in user preferences across different headsets. Additionally, we present iSQoE, a new model for stereo quality of experience assessment trained on our dataset. We show that iSQoE aligns better with human preferences than existing methods when comparing mono-to-stereo conversion methods.
- Abstract(参考訳): 仮想現実(VR)ヘッドセットの急速な進歩により、没入型で快適な3D体験を実現するためには、効果的に立体視的体験品質(SQoE)を測定することが不可欠になっている。
しかし、既存のステレオメトリクスのほとんどは、視覚的な不快感や画質といった視聴体験の孤立した側面に焦点を当てており、伝統的にデータ制限に直面してきた。
これらのギャップに対処するため, SCOPE (Stereoscopic Content Preference Evaluation) を新たに提案する。
このデータセットには、VRヘッドセット上で収集された嗜好アノテーションがラベル付けられています。
さらに、データセット上でトレーニングされた経験評価のステレオ品質のための新しいモデルiSQoEを提案する。
iSQoEはモノ・ステレオ変換法の比較において,従来の方法よりも人間の好みによく適合していることを示す。
関連論文リスト
- Hearing Anything Anywhere [26.415266601469767]
DiffRIRは,シーンの音響特性を解釈可能なパラメトリックモデルで表現可能なRIRレンダリングフレームワークである。
これにより、任意のソースオーディオを用いて、空間を通して新しい聴覚体験を合成することができる。
我々のモデルは、モノラルなRIRや音楽のレンダリングにおいて、最先端のベースラインよりも優れています。
論文 参考訳(メタデータ) (2024-06-11T17:56:14Z) - 3D Human Pose Perception from Egocentric Stereo Videos [67.9563319914377]
我々は,エゴセントリックな立体3次元ポーズ推定を改善するためのトランスフォーマーベースの新しいフレームワークを提案する。
本手法は, しゃがんだり座ったりといった困難なシナリオにおいても, 人間のポーズを正確に推定することができる。
私たちはUnrealEgo2、UnrealEgo-RW、およびトレーニングされたモデルをプロジェクトページでリリースします。
論文 参考訳(メタデータ) (2023-12-30T21:21:54Z) - Stereo Matching in Time: 100+ FPS Video Stereo Matching for Extended
Reality [65.70936336240554]
リアルタイムステレオマッチング(Real-time Stereo Matching)は、屋内3D理解、ビデオパススルー、混合現実感ゲームなど、多くの拡張現実感(XR)アプリケーションのための基盤となるアルゴリズムである。
最大の課題の1つは、ヘッドマウントのVR/ARメガネによってキャプチャされた高品質な屋内ビデオステレオトレーニングデータセットの欠如である。
室内シーンのレンダリングと6-DoF移動VR/ARヘッドマウントディスプレイ(HMD)によるリアルなカメラモーションを含む,新しいステレオ合成データセットを提案する。
これにより既存のアプローチの評価が促進され、屋内拡張現実シナリオのさらなる研究が促進される。
論文 参考訳(メタデータ) (2023-09-08T07:53:58Z) - DynamicStereo: Consistent Dynamic Depth from Stereo Videos [91.1804971397608]
ステレオビデオの相違を推定するためにDynamicStereoを提案する。
ネットワークは、その予測の時間的一貫性を改善するために、隣接するフレームからの情報をプールすることを学ぶ。
スキャンされた環境における人や動物の合成ビデオを含む新しいベンチマークデータセットであるDynamic Replicaも導入した。
論文 参考訳(メタデータ) (2023-05-03T17:40:49Z) - NeuralPassthrough: Learned Real-Time View Synthesis for VR [3.907767419763815]
ステレオ一対のRGBカメラを用いたVRヘッドセットを用いて,最初の学習パススルー手法を提案し,その性能を評価する。
得られたパススルー手法は,最先端の手法に比べて画像品質が優れていることを示す。
論文 参考訳(メタデータ) (2022-07-05T17:39:22Z) - Visually Informed Binaural Audio Generation without Binaural Audios [130.80178993441413]
記録のない効果的なパイプラインであるPseudoBinauralを提案します。
本研究では球面高調波分解と頭部関連インパルス応答(hrir)を用いて空間位置と受信音声の関係を同定する。
当社の記録のないパイプラインは、データセット間の評価において大きな安定性を示し、主観的な好みで匹敵するパフォーマンスを実現します。
論文 参考訳(メタデータ) (2021-04-13T13:07:33Z) - SelfPose: 3D Egocentric Pose Estimation from a Headset Mounted Camera [97.0162841635425]
頭部装着型VR装置の縁に設置した下向きの魚眼カメラから撮影した単眼画像から,エゴセントリックな3Dボディポーズ推定法を提案する。
この特異な視点は、厳密な自己閉塞と視点歪みを伴う、独特の視覚的な外観のイメージに繋がる。
本稿では,2次元予測の不確実性を考慮した新しいマルチブランチデコーダを用いたエンコーダデコーダアーキテクチャを提案する。
論文 参考訳(メタデータ) (2020-11-02T16:18:06Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。