Open RAN-Enabled Deep Learning-Assisted Mobility Management for Connected Vehicles
- URL: http://arxiv.org/abs/2412.21161v1
- Date: Mon, 30 Dec 2024 18:41:29 GMT
- Title: Open RAN-Enabled Deep Learning-Assisted Mobility Management for Connected Vehicles
- Authors: Maria Barbosa, Kelvin Dias,
- Abstract summary: This paper proposes the adoption of Open Radio Access Network (Open RAN/O-RAN) and deep learning models for decision-making to prevent Quality of Service degradation due to handovers (HOs)
The solution utilizes the O-RAN Software Community (OSC), an open-source O-RAN platform developed by the O-RAN Alliance and Linux Foundation, to develop xApps that are executed in the near-Real-Time RIC of OSC.
- Score: 0.0
- License:
- Abstract: Connected Vehicles (CVs) can leverage the unique features of 5G and future 6G/NextG networks to enhance Intelligent Transportation System (ITS) services. However, even with advancements in cellular network generations, CV applications may experience communication interruptions in high-mobility scenarios due to frequent changes of serving base station, also known as handovers (HOs). This paper proposes the adoption of Open Radio Access Network (Open RAN/O-RAN) and deep learning models for decision-making to prevent Quality of Service (QoS) degradation due to HOs and to ensure the timely connectivity needed for CV services. The solution utilizes the O-RAN Software Community (OSC), an open-source O-RAN platform developed by the collaboration between the O-RAN Alliance and Linux Foundation, to develop xApps that are executed in the near-Real-Time RIC of OSC. To demonstrate the proposal's effectiveness, an integrated framework combining the OMNeT++ simulator and OSC was created. Evaluations used real-world datasets in urban application scenarios, such as video streaming transmission and over-the-air (OTA) updates. Results indicate that the proposal achieved superior performance and reduced latency compared to the standard 3GPP HO procedure.
Related papers
- Intelligent Mobile AI-Generated Content Services via Interactive Prompt Engineering and Dynamic Service Provisioning [55.641299901038316]
AI-generated content can organize collaborative Mobile AIGC Service Providers (MASPs) at network edges to provide ubiquitous and customized content for resource-constrained users.
Such a paradigm faces two significant challenges: 1) raw prompts often lead to poor generation quality due to users' lack of experience with specific AIGC models, and 2) static service provisioning fails to efficiently utilize computational and communication resources.
We develop an interactive prompt engineering mechanism that leverages a Large Language Model (LLM) to generate customized prompt corpora and employs Inverse Reinforcement Learning (IRL) for policy imitation.
arXiv Detail & Related papers (2025-02-17T03:05:20Z) - AI Flow at the Network Edge [58.31090055138711]
AI Flow is a framework that streamlines the inference process by jointly leveraging the heterogeneous resources available across devices, edge nodes, and cloud servers.
This article serves as a position paper for identifying the motivation, challenges, and principles of AI Flow.
arXiv Detail & Related papers (2024-11-19T12:51:17Z) - A Learning-based Incentive Mechanism for Mobile AIGC Service in Decentralized Internet of Vehicles [49.86094523878003]
We propose a decentralized incentive mechanism for mobile AIGC service allocation.
We employ multi-agent deep reinforcement learning to find the balance between the supply of AIGC services on RSUs and user demand for services within the IoV context.
arXiv Detail & Related papers (2024-03-29T12:46:07Z) - Open RAN LSTM Traffic Prediction and Slice Management using Deep
Reinforcement Learning [7.473473066047965]
This paper introduces a novel approach to ORAN slicing using distributed deep reinforcement learning (DDRL)
Simulation results demonstrate significant improvements in network performance, particularly in reducing violations.
This emphasizes the importance of using the prediction rApp and distributed actors' information jointly as part of a dynamic xApp.
arXiv Detail & Related papers (2024-01-12T22:43:07Z) - A Wireless AI-Generated Content (AIGC) Provisioning Framework Empowered by Semantic Communication [53.78269720999609]
This paper proposes a semantic communication (SemCom)-empowered AIGC (SemAIGC) generation and transmission framework.
Specifically, SemAIGC integrates diffusion models within the semantic encoder and decoder to design a workload-adjustable transceiver.
Simulations verify the superiority of our proposed SemAIGC framework in terms of latency and content quality compared to conventional approaches.
arXiv Detail & Related papers (2023-10-26T18:05:22Z) - Generative AI-aided Joint Training-free Secure Semantic Communications
via Multi-modal Prompts [89.04751776308656]
This paper proposes a GAI-aided SemCom system with multi-model prompts for accurate content decoding.
In response to security concerns, we introduce the application of covert communications aided by a friendly jammer.
arXiv Detail & Related papers (2023-09-05T23:24:56Z) - Intelligent O-RAN Traffic Steering for URLLC Through Deep Reinforcement
Learning [3.59419219139168]
Open RAN (O-RAN) is a promising paradigm for building an intelligent RAN architecture.
This paper presents a Machine Learning (ML)-based Traffic Steering (TS) scheme to predict network congestion and then steer O-RAN traffic to avoid it and reduce the expected delay.
Our solution is evaluated against traditional reactive TS approaches that are offered as xApps in O-RAN and shows an average of 15.81 percent decrease in queuing delay across all deployed SFCs.
arXiv Detail & Related papers (2023-03-03T14:34:25Z) - Programmable and Customized Intelligence for Traffic Steering in 5G
Networks Using Open RAN Architectures [16.48682480842328]
5G and beyond mobile networks will support heterogeneous use cases at an unprecedented scale.
Such fine-grained control of the Radio Access Network (RAN) is not possible with the current cellular architecture.
We propose an open architecture with abstractions that enable closed-loop control and provide data-driven, and intelligent optimization of the RAN at the user level.
arXiv Detail & Related papers (2022-09-28T15:31:06Z) - Artificial Intelligence Empowered Multiple Access for Ultra Reliable and
Low Latency THz Wireless Networks [76.89730672544216]
Terahertz (THz) wireless networks are expected to catalyze the beyond fifth generation (B5G) era.
To satisfy the ultra-reliability and low-latency demands of several B5G applications, novel mobility management approaches are required.
This article presents a holistic MAC layer approach that enables intelligent user association and resource allocation, as well as flexible and adaptive mobility management.
arXiv Detail & Related papers (2022-08-17T03:00:24Z) - Self-play Learning Strategies for Resource Assignment in Open-RAN
Networks [3.763743638851161]
Open Radio Access Network (ORAN) is being developed with an aim to democratise access and lower the cost of future mobile data networks.
In ORAN, network functionality is dis-aggregated into remote units (RUs), distributed units (DUs) and central units (CUs)
arXiv Detail & Related papers (2021-03-03T19:31:29Z) - Intelligence and Learning in O-RAN for Data-driven NextG Cellular
Networks [22.260874168813647]
"NextG" cellular networks will be built upon programmable, and disaggregated architectures.
This article explores the NextG disaggregated architecture proposed by the O-RAN Alliance.
It provides the first large-scale demonstration of the integration of O-RAN-compliant software components with an open-source full-stack softwarized cellular network.
arXiv Detail & Related papers (2020-12-02T15:12:18Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.