Thought Manipulation: External Thought Can Be Efficient for Large Reasoning Models
- URL: http://arxiv.org/abs/2504.13626v2
- Date: Mon, 04 Aug 2025 12:34:26 GMT
- Title: Thought Manipulation: External Thought Can Be Efficient for Large Reasoning Models
- Authors: Yule Liu, Jingyi Zheng, Zhen Sun, Zifan Peng, Wenhan Dong, Zeyang Sha, Shiwen Cui, Weiqiang Wang, Xinlei He,
- Abstract summary: Large reasoning models (LRMs) often suffer from an overthinking'' problem, where the model generates excessively redundant reasoning steps with limited performance gains.<n>We propose a simple yet efficient pipeline, Method, to enable LRMs to bypass unnecessary intermediate steps, thereby significantly reducing computational costs.
- Score: 32.49420948390984
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Recent advancements in large reasoning models (LRMs) have demonstrated the effectiveness of scaling test-time computation to enhance reasoning capabilities on various tasks. However, LRMs often suffer from an ``overthinking'' problem, where the model generates excessively redundant reasoning steps with limited performance gains. In this work, we empirically reveal an important characteristic of LRM behaviors that placing external CoTs generated by smaller models between the thinking token (\texttt{<think>} and \texttt{</think>}) can effectively manipulate the model to generate fewer thoughts. Building on this finding, we propose a simple yet efficient pipeline, \Method, to enable LRMs to bypass unnecessary intermediate steps, thereby significantly reducing computational costs. We conduct extensive experiments to evaluate the utility and efficiency of \Method. For instance, when applied to QwQ-32B on the LiveBench/Code dataset, \Method keeps the original performance while reducing output token counts by approximately 30\%, with minimal overhead introduced by the CoT generator. Furthermore, we identify two suboptimal modes, blindly following flawed external thoughts and unnecessary rethinking, and show that simple mitigations, such as difficulty-aware fallbacks, can further improve performance. Overall, \Method offers a practical, general, and efficient way to optimize LRM inference, making powerful reasoning models more accessible and scalable for real-world applications.
Related papers
- Is Long-to-Short a Free Lunch? Investigating Inconsistency and Reasoning Efficiency in LRMs [8.359909829007005]
We investigate whether efficient reasoning strategies introduce behavioral inconsistencies in large reasoning models (LRMs)<n>$ICBENCH$ is a benchmark designed to measure inconsistency in LRMs across three dimensions.<n>We find that while larger models generally exhibit greater consistency than smaller ones, they all display widespread "scheming" behaviors.
arXiv Detail & Related papers (2025-06-24T10:25:28Z) - Exploring and Exploiting the Inherent Efficiency within Large Reasoning Models for Self-Guided Efficiency Enhancement [101.77467538102924]
Large reasoning models (LRMs) exhibit overthinking, which hinders efficiency and inflates inference cost.<n>We propose two lightweight methods to enhance LRM efficiency.<n>First, we introduce Efficiency Steering, a training-free activation steering technique that modulates reasoning behavior via a single direction.<n>Second, we develop Self-Rewarded Efficiency RL, a reinforcement learning framework that dynamically balances task accuracy and brevity.
arXiv Detail & Related papers (2025-06-18T17:18:12Z) - THINK-Bench: Evaluating Thinking Efficiency and Chain-of-Thought Quality of Large Reasoning Models [17.609493312457]
Large reasoning models (LRMs) have achieved impressive performance in complex tasks, often outperforming conventional large language models (LLMs)<n>Overthinking severely limits their computational efficiency.<n>We introduce Think-Bench, a benchmark designed to evaluate the reasoning efficiency of LRMs.
arXiv Detail & Related papers (2025-05-28T08:41:14Z) - Self-Route: Automatic Mode Switching via Capability Estimation for Efficient Reasoning [36.470695895695044]
Self-Route is a dynamic reasoning framework that automatically selects between general and reasoning modes.<n>We show that Self-Route achieves comparable accuracy to reasoning models while reducing token consumption by 30-55%.
arXiv Detail & Related papers (2025-05-27T03:18:31Z) - Let LLMs Break Free from Overthinking via Self-Braking Tuning [60.08396797526657]
Large reasoning models (LRMs) have significantly enhanced their reasoning capabilities by generating longer chains of thought.<n>This performance gain comes at the cost of a substantial increase in redundant reasoning during the generation process.<n>We propose a novel framework, Self-Braking Tuning (SBT), which tackles overthinking from the perspective of allowing the model to regulate its own reasoning process.
arXiv Detail & Related papers (2025-05-20T16:53:40Z) - Scalable Chain of Thoughts via Elastic Reasoning [61.75753924952059]
Elastic Reasoning is a novel framework for scalable chain of thoughts.<n>It separates reasoning into two phases--thinking and solution--with independently allocated budgets.<n>Our approach produces more concise and efficient reasoning even in unconstrained settings.
arXiv Detail & Related papers (2025-05-08T15:01:06Z) - Trade-offs in Large Reasoning Models: An Empirical Analysis of Deliberative and Adaptive Reasoning over Foundational Capabilities [101.77467538102924]
Recent advancements in Large Reasoning Models (LRMs) have demonstrated remarkable performance in specialized reasoning tasks.
We show that acquiring deliberative reasoning capabilities significantly reduces the foundational capabilities of LRMs.
We demonstrate that adaptive reasoning -- employing modes like Zero-Thinking, Less-Thinking, and Summary-Thinking -- can effectively alleviate these drawbacks.
arXiv Detail & Related papers (2025-03-23T08:18:51Z) - START: Self-taught Reasoner with Tools [51.38785489790888]
We introduce START (Self-Taught Reasoner with Tools), a tool-integrated long Chain-of-thought (CoT) reasoning LLM.<n> START is capable of performing complex computations, self-checking, exploring diverse methods, and self-ging.<n>It significantly outperforms the base QwQ-32B and achieves performance comparable to the state-of-the-art open-weight model R1-Distill-Qwen-32B.
arXiv Detail & Related papers (2025-03-06T17:11:51Z) - Scalable Best-of-N Selection for Large Language Models via Self-Certainty [65.31658824274894]
Best-of-N selection is a key technique for improving the reasoning performance of Large Language Models.<n>We propose self-certainty, a novel and efficient metric to estimate response quality without requiring external reward models.<n>Our findings establish self-certainty as a practical and efficient way for improving LLM reasoning capabilities.
arXiv Detail & Related papers (2025-02-25T19:08:07Z) - Towards Thinking-Optimal Scaling of Test-Time Compute for LLM Reasoning [113.49074603075032]
Recent studies have shown that making a model spend more time thinking through longer Chain of Thoughts (CoTs) enables it to gain significant improvements in complex reasoning tasks.
We explore whether scaling with longer CoTs can indeed impair the reasoning performance of Large Language Models (LLMs) in certain domains.
arXiv Detail & Related papers (2025-02-25T10:48:05Z) - DSMoE: Matrix-Partitioned Experts with Dynamic Routing for Computation-Efficient Dense LLMs [70.91804882618243]
This paper proposes DSMoE, a novel approach that achieves sparsification by partitioning pre-trained FFN layers into computational blocks.<n>We implement adaptive expert routing using sigmoid activation and straight-through estimators, enabling tokens to flexibly access different aspects of model knowledge.<n>Experiments on LLaMA models demonstrate that under equivalent computational constraints, DSMoE achieves superior performance compared to existing pruning and MoE approaches.
arXiv Detail & Related papers (2025-02-18T02:37:26Z) - Do NOT Think That Much for 2+3=? On the Overthinking of o1-Like LLMs [76.43407125275202]
o1-like models can emulate human-like long-time thinking during inference.<n>This paper presents the first comprehensive study on the prevalent issue of overthinking in these models.<n>We propose strategies to mitigate overthinking, streamlining reasoning processes without compromising accuracy.
arXiv Detail & Related papers (2024-12-30T18:55:12Z) - Rational Metareasoning for Large Language Models [5.5539136805232205]
Being prompted to engage in reasoning has emerged as a core technique for using large language models (LLMs)<n>This work introduces a novel approach based on computational models of metareasoning used in cognitive science.<n>We develop a reward function that incorporates the Value of Computation by penalizing unnecessary reasoning.
arXiv Detail & Related papers (2024-10-07T23:48:52Z) - Maximize to Explore: One Objective Function Fusing Estimation, Planning,
and Exploration [87.53543137162488]
We propose an easy-to-implement online reinforcement learning (online RL) framework called textttMEX.
textttMEX integrates estimation and planning components while balancing exploration exploitation automatically.
It can outperform baselines by a stable margin in various MuJoCo environments with sparse rewards.
arXiv Detail & Related papers (2023-05-29T17:25:26Z) - ReWOO: Decoupling Reasoning from Observations for Efficient Augmented
Language Models [32.95155349925248]
We propose a modular paradigm ReWOO that detaches the reasoning process from external observations, thus significantly reducing token consumption.
We show that ReWOO achieves 5x token efficiency and 4% accuracy improvement on HotpotQA, a multi-step reasoning benchmark.
Our illustrative work offloads reasoning ability from 175B GPT3.5 into 7B LLaMA, demonstrating the significant potential for truly efficient and scalable ALM systems.
arXiv Detail & Related papers (2023-05-23T00:16:48Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.