論文の概要: Ensemble of classifiers for speech evaluation
- arxiv url: http://arxiv.org/abs/2501.00067v1
- Date: Sun, 29 Dec 2024 17:28:32 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-01-05 20:43:25.010167
- Title: Ensemble of classifiers for speech evaluation
- Title(参考訳): 音声評価のための分類器のアンサンブル
- Authors: G. Belokrylov, A. Korenev, B. Lodonova, A. Novokhrestov,
- Abstract要約: 本稿では,医学における音声評価の問題を解決するために,バイナリ分類器のアンサンブルを適用しようとする試みについて述べる。
音節の発音品質の定量的および専門的な評価に基づいてデータセットを作成した。
- 参考スコア(独自算出の注目度): 0.0
- License:
- Abstract: The article describes an attempt to apply an ensemble of binary classifiers to solve the problem of speech assessment in medicine. A dataset was compiled based on quantitative and expert assessments of syllable pronunciation quality. Quantitative assessments of 7 selected metrics were used as features: dynamic time warp distance, Minkowski distance, correlation coefficient, longest common subsequence (LCSS), edit distance of real se-quence (EDR), edit distance with real penalty (ERP), and merge split (MSM). Expert as-sessment of pronunciation quality was used as a class label: class 1 means high-quality speech, class 0 means distorted. A comparison of training results was carried out for five classification methods: logistic regression (LR), support vector machine (SVM), naive Bayes (NB), decision trees (DT), and K-nearest neighbors (KNN). The results of using the mixture method to build an ensemble of classifiers are also presented. The use of an en-semble for the studied data sets allowed us to slightly increase the classification accuracy compared to the use of individual binary classifiers.
- Abstract(参考訳): 本稿では,医学における音声評価の問題を解決するために,バイナリ分類器のアンサンブルを適用しようとする試みについて述べる。
音節の発音品質の定量的および専門的な評価に基づいてデータセットを作成した。
動的時間ワープ距離、ミンコフスキー距離、相関係数、LCSS、実数列の編集距離(EDR)、実数列の編集距離(ERP)、マージ分割(MSM)の7つの指標を定量的に評価した。
1級は高品質な音声、0級は歪んだ音である。
ロジスティック回帰(LR)、サポートベクターマシン(SVM)、ナイーブベイズ(NB)、決定木(DT)、K-アネレスト近隣(KNN)の5つの分類法の比較を行った。
混合法を用いて分類器のアンサンブルを構築する結果も提示する。
研究データセットに対するen-sembleの使用により、個々のバイナリ分類器と比較して、分類精度をわずかに向上することができた。
関連論文リスト
- Co-training for Low Resource Scientific Natural Language Inference [65.37685198688538]
遠隔教師付きラベルに分類器のトレーニング力学に基づいて重みを割り当てる新しいコトレーニング手法を提案する。
予測された信頼度に対する任意のしきい値に基づいてサンプルをフィルタリングするのではなく、重要重みを割り当てることにより、自動ラベル付きデータの使用を最大化する。
提案手法は、遠隔監視ベースラインに対するマクロF1の1.5%の改善と、他の強力なSSLベースラインよりも大幅に改善されている。
論文 参考訳(メタデータ) (2024-06-20T18:35:47Z) - Retrieval-Augmented Classification with Decoupled Representation [31.662843145399044]
そこで本研究では,KNN(Kk$-nearest-neighbor)に基づく拡張分類検索手法を提案する。
分類と検索の共有表現がパフォーマンスを損なうことや,トレーニングの不安定化につながることが判明した。
本手法は,幅広い分類データセットを用いて評価する。
論文 参考訳(メタデータ) (2023-03-23T06:33:06Z) - Anomaly Detection using Ensemble Classification and Evidence Theory [62.997667081978825]
本稿では,アンサンブル分類とエビデンス理論を用いた新しい検出手法を提案する。
固体アンサンブル分類器を構築するためのプール選択戦略が提示される。
我々は異常検出手法の不確実性を利用する。
論文 参考訳(メタデータ) (2022-12-23T00:50:41Z) - Speaker Embedding-aware Neural Diarization: a Novel Framework for
Overlapped Speech Diarization in the Meeting Scenario [51.5031673695118]
重なり合う音声のダイアリゼーションを単一ラベル予測問題として再構成する。
話者埋め込み認識型ニューラルダイアリゼーション(SEND)システムを提案する。
論文 参考訳(メタデータ) (2022-03-18T06:40:39Z) - Learning-From-Disagreement: A Model Comparison and Visual Analytics
Framework [21.055845469999532]
本稿では,2つの分類モデルを視覚的に比較するフレームワークを提案する。
具体的には、不一致のインスタンスから学ぶために差別者を訓練する。
我々は、訓練された識別器を、異なるメタ特徴のSHAP値で解釈する。
論文 参考訳(メタデータ) (2022-01-19T20:15:35Z) - Prototypical Classifier for Robust Class-Imbalanced Learning [64.96088324684683]
埋め込みネットワークに付加的なパラメータを必要としないtextitPrototypealを提案する。
プロトタイプは、訓練セットがクラス不均衡であるにもかかわらず、すべてのクラスに対してバランスと同等の予測を生成する。
我々は, CIFAR-10LT, CIFAR-100LT, Webvision のデータセットを用いて, プロトタイプが芸術の状況と比較した場合, サブスタンスの改善が得られることを検証した。
論文 参考訳(メタデータ) (2021-10-22T01:55:01Z) - Visualizing Classifier Adjacency Relations: A Case Study in Speaker
Verification and Voice Anti-Spoofing [72.4445825335561]
任意のバイナリ分類器によって生成される検出スコアから2次元表現を導出する簡単な方法を提案する。
ランク相関に基づいて,任意のスコアを用いた分類器の視覚的比較を容易にする。
提案手法は完全に汎用的であり,任意の検出タスクに適用可能だが,自動話者検証と音声アンチスプーフィングシステムによるスコアを用いた手法を実証する。
論文 参考訳(メタデータ) (2021-06-11T13:03:33Z) - Predicting Classification Accuracy When Adding New Unobserved Classes [8.325327265120283]
そこで本研究では,より大規模で未観測のクラスに対して,期待する精度を推定するために,分類器の性能をどのように利用することができるかを検討する。
ニューラルネットワークに基づく頑健なアルゴリズム "CleaneX" を定式化し,任意のサイズのクラスに対して,そのような分類器の精度を推定する。
論文 参考訳(メタデータ) (2020-10-28T14:37:25Z) - Ensemble of Binary Classifiers Combined Using Recurrent Correlation
Associative Memories [1.3706331473063877]
多数決は、アンサンブル法で分類器を結合する手法の例である。
本稿では,二項分類問題に対する繰り返し相関連想記憶に基づくアンサンブル手法を提案する。
論文 参考訳(メタデータ) (2020-09-18T01:16:53Z) - Diversity-Aware Weighted Majority Vote Classifier for Imbalanced Data [1.2944868613449219]
多様性を考慮したアンサンブル学習に基づくアルゴリズム DAMVI を提案する。
本稿では, 予測保守作業, クレジットカード不正検出, ウェブページ分類, 医療応用に関する最先端モデルに関して, 提案手法の効率性を示す。
論文 参考訳(メタデータ) (2020-04-16T11:27:50Z) - A Systematic Evaluation: Fine-Grained CNN vs. Traditional CNN
Classifiers [54.996358399108566]
本稿では,大規模分類データセット上でトップノーチ結果を示すランドマーク一般的なCNN分類器の性能について検討する。
最先端のきめ細かい分類器と比較する。
実験において, 粒度の細かい分類器がベースラインを高められるかどうかを判定するために, 6つのデータセットについて広範囲に評価する。
論文 参考訳(メタデータ) (2020-03-24T23:49:14Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。