Probabilistic Explanations for Linear Models
- URL: http://arxiv.org/abs/2501.00154v1
- Date: Mon, 30 Dec 2024 21:59:16 GMT
- Title: Probabilistic Explanations for Linear Models
- Authors: Bernardo Subercaseaux, Marcelo Arenas, Kuldeep S Meel,
- Abstract summary: Formal XAI focuses on providing explanations with mathematical guarantees for the decisions made by machine learning models.
We show that $(delta, epsilon)$-SR, a simple relaxation of $delta$-SRs, can be computed efficiently over linear models.
- Score: 35.437057227703846
- License:
- Abstract: Formal XAI is an emerging field that focuses on providing explanations with mathematical guarantees for the decisions made by machine learning models. A significant amount of work in this area is centered on the computation of "sufficient reasons". Given a model $M$ and an input instance $\vec{x}$, a sufficient reason for the decision $M(\vec{x})$ is a subset $S$ of the features of $\vec{x}$ such that for any instance $\vec{z}$ that has the same values as $\vec{x}$ for every feature in $S$, it holds that $M(\vec{x}) = M(\vec{z})$. Intuitively, this means that the features in $S$ are sufficient to fully justify the classification of $\vec{x}$ by $M$. For sufficient reasons to be useful in practice, they should be as small as possible, and a natural way to reduce the size of sufficient reasons is to consider a probabilistic relaxation; the probability of $M(\vec{x}) = M(\vec{z})$ must be at least some value $\delta \in (0,1]$, for a random instance $\vec{z}$ that coincides with $\vec{x}$ on the features in $S$. Computing small $\delta$-sufficient reasons ($\delta$-SRs) is known to be a theoretically hard problem; even over decision trees--traditionally deemed simple and interpretable models--strong inapproximability results make the efficient computation of small $\delta$-SRs unlikely. We propose the notion of $(\delta, \epsilon)$-SR, a simple relaxation of $\delta$-SRs, and show that this kind of explanation can be computed efficiently over linear models.
Related papers
- Model-agnostic basis functions for the 2-point correlation function of dark matter in linear theory [0.0]
We find a basis $mathcalB$ that describes $xi_rm lin(r)$ near the baryon acoustic oscillation feature in a wide class of cosmological models.
Using our basis functions in model-agnostic BAO analyses can potentially lead to significant statistical gains.
arXiv Detail & Related papers (2024-10-28T18:00:01Z) - Monge-Kantorovich Fitting With Sobolev Budgets [6.748324975906262]
We quantify the performance of the approximation with the Monge-Kantorovich $p$-cost.
We may then reform the problem as minimizing a functional $mathscrJ_p(f)$ under a constraint on the Sobolev budget.
arXiv Detail & Related papers (2024-09-25T01:30:16Z) - $\ell_p$-Regression in the Arbitrary Partition Model of Communication [59.89387020011663]
We consider the randomized communication complexity of the distributed $ell_p$-regression problem in the coordinator model.
For $p = 2$, i.e., least squares regression, we give the first optimal bound of $tildeTheta(sd2 + sd/epsilon)$ bits.
For $p in (1,2)$,we obtain an $tildeO(sd2/epsilon + sd/mathrmpoly(epsilon)$ upper bound.
arXiv Detail & Related papers (2023-07-11T08:51:53Z) - Reward-Mixing MDPs with a Few Latent Contexts are Learnable [75.17357040707347]
We consider episodic reinforcement learning in reward-mixing Markov decision processes (RMMDPs)
Our goal is to learn a near-optimal policy that nearly maximizes the $H$ time-step cumulative rewards in such a model.
arXiv Detail & Related papers (2022-10-05T22:52:00Z) - A spectral least-squares-type method for heavy-tailed corrupted
regression with unknown covariance \& heterogeneous noise [2.019622939313173]
We revisit heavy-tailed corrupted least-squares linear regression assuming to have a corrupted $n$-sized label-feature sample of at most $epsilon n$ arbitrary outliers.
We propose a near-optimal computationally tractable estimator, based on the power method, assuming no knowledge on $(Sigma,Xi) nor the operator norm of $Xi$.
arXiv Detail & Related papers (2022-09-06T23:37:31Z) - On Computing Probabilistic Explanations for Decision Trees [4.406418914680962]
"sufficient reasons" are a kind of explanation in which given a decision tree $T$ and an instance $x$, one explains the decision $T(x)$.
Our paper settles the computational complexity of $delta$-sufficient-reasons over decision trees.
We identify structural restrictions of decision trees that make the problem tractable, and show how SAT solvers might be able to tackle these problems in practical settings.
arXiv Detail & Related papers (2022-06-30T21:58:31Z) - Simplest non-additive measures of quantum resources [77.34726150561087]
We study measures that can be described by $cal E(rhootimes N) =E(e;N) ne Ne$.
arXiv Detail & Related papers (2021-06-23T20:27:04Z) - Learning a Latent Simplex in Input-Sparsity Time [58.30321592603066]
We consider the problem of learning a latent $k$-vertex simplex $KsubsetmathbbRdtimes n$, given access to $AinmathbbRdtimes n$.
We show that the dependence on $k$ in the running time is unnecessary given a natural assumption about the mass of the top $k$ singular values of $A$.
arXiv Detail & Related papers (2021-05-17T16:40:48Z) - $Q$-learning with Logarithmic Regret [60.24952657636464]
We prove that an optimistic $Q$-learning enjoys a $mathcalOleft(fracSAcdot mathrmpolyleft(Hright)Delta_minlogleft(SATright)right)$ cumulative regret bound, where $S$ is the number of states, $A$ is the number of actions, $H$ is the planning horizon, $T$ is the total number of steps, and $Delta_min$ is the minimum sub-optimality gap.
arXiv Detail & Related papers (2020-06-16T13:01:33Z) - Model-Free Reinforcement Learning: from Clipped Pseudo-Regret to Sample
Complexity [59.34067736545355]
Given an MDP with $S$ states, $A$ actions, the discount factor $gamma in (0,1)$, and an approximation threshold $epsilon > 0$, we provide a model-free algorithm to learn an $epsilon$-optimal policy.
For small enough $epsilon$, we show an improved algorithm with sample complexity.
arXiv Detail & Related papers (2020-06-06T13:34:41Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.