Spectra of Magnetoroton and Chiral Graviton Modes of Fractional Chern Insulator
- URL: http://arxiv.org/abs/2501.00247v3
- Date: Thu, 05 Jun 2025 01:28:34 GMT
- Title: Spectra of Magnetoroton and Chiral Graviton Modes of Fractional Chern Insulator
- Authors: Min Long, Hongyu Lu, Han-Qing Wu, Zi Yang Meng,
- Abstract summary: We compute the spectra of charge-neutral excitations in the $nu=1/2$ (bosonic) updated and $1/3$ (fermionic) fractional Chern insulator (FCI) on the Haldane honeycomb lattice model.<n>The magnetoroton visualized from the dynamic density structure factor acquires a minimum gap at finite momentum that can go soft with increasing interaction.
- Score: 14.778738430762179
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Employing the state-of-the-art time-dependent variational principle (TDVP) algorithm, we compute the spectra of charge-neutral excitations in the $\nu=1/2$ (bosonic) \updated{ and $1/3$ (fermionic) fractional Chern insulator (FCI)} on the Haldane honeycomb lattice model. The magnetoroton visualized from the dynamic density structure factor acquires a minimum gap at finite momentum that can go soft with increasing interaction and give rise to a charge density wave (CDW) at the same wavevector. As the system approaches the FCI-to-CDW transition point, we observe a pronounced sharpening of the roton mode, suggesting that the magnetoroton behaves more like a quasiparticle as it softens. Notably, this occurs while the single-particle gap remains finite. Besides the magnetoroton at finite momentum, we also construct quadrupolar chiral operators in a discrete lattice and resolve the chiral graviton mode around the $\Gamma$ point of the Brillouin zone. Furthermore, we show the different chiralities of the gravitons of FCIs with opposite-sign Hall conductance for the first time.
Related papers
- Floquet Engineering Clock Transitions in Magnetic Molecules [1.1534313664323634]
We study Floquet engineering of magnetic molecules via a time-periodic magnetic field.
We demonstrate significant continuous tunability of the low-lying energy levels.
arXiv Detail & Related papers (2025-03-15T16:33:14Z) - Theory of fractional quantum Hall liquids coupled to quantum light and emergent graviton-polaritons [0.0]
We study the dynamics of a $nu=1/3$ Laughlin state in a single-mode cavity with finite electric field gradients.
We find that the topological signatures of the FQH state remain robust against the non-local modulated cavity vacuum fluctuations.
By exploring the low-energy excited spectrum inside the FQH phase, we identify a new neutral quasiparticle, the graviton-polariton.
arXiv Detail & Related papers (2024-05-20T18:00:36Z) - Emergent quantum Majorana metal from a chiral spin liquid [50.56734933757366]
We propose a mechanism to explain the emergence of an intermediate gapless spin liquid phase in the antiferromagnetic Kitaev model.<n>We show that the Majorana spectral function captures the dynamical spin and dimer correlations obtained by the infinite Projectedangled Pair States method.
arXiv Detail & Related papers (2024-05-20T18:00:01Z) - Local quenches in fracton field theory: Lieb-Robinson bound, non-causal dynamics and fractal excitation patterns [37.69303106863453]
We study the out-of-equilibrium dynamics induced by a local perturbation in fracton field theory.
For the theory in finite volume, we show that the fracton wave front acquires fractal shape with non-trivial Hausdorff dimension.
arXiv Detail & Related papers (2023-10-17T12:21:15Z) - Fragmented superconductivity in the Hubbard model as solitons in Ginzburg-Landau theory [39.58317527488534]
Superconductivity and charge density waves are observed in close vicinity in strongly correlated materials.
We investigate the nature of such an intertwined state of matter stabilized in the phase diagram of the elementary $t$-$tprime$-$U$ Hubbard model.
We provide conclusive evidence that the macroscopic wave functions of the superconducting fragments are well-described by soliton solutions of a Ginzburg-Landau equation.
arXiv Detail & Related papers (2023-07-21T18:00:07Z) - Magnetic catalysis in weakly interacting hyperbolic Dirac materials [0.0]
We show that application of strong external magnetic fields by virtue of producing a emphfinite density of states near the zero energy triggers the condensation of the CDW order even for emphsimal $V$.<n>We present scaling of the CDW order with the total flux enclosed by hyperbolic Dirac materials for a wide range of (especially subcritical) $V$.
arXiv Detail & Related papers (2023-05-18T17:59:32Z) - Thermal masses and trapped-ion quantum spin models: a self-consistent approach to Yukawa-type interactions in the $λ\!φ^4$ model [44.99833362998488]
A quantum simulation of magnetism in trapped-ion systems makes use of the crystal vibrations to mediate pairwise interactions between spins.
These interactions can be accounted for by a long-wavelength relativistic theory, where the phonons are described by a coarse-grained Klein-Gordon field.
We show that thermal effects, which can be controlled by laser cooling, can unveil this flow through the appearance of thermal masses in interacting QFTs.
arXiv Detail & Related papers (2023-05-10T12:59:07Z) - Non-linear chiral magnetic waves [0.0]
We report the first quantum simulation (on classical hardware) of the real-time dynamics of CMWs in Schwinger model.
For $m/g > 1$, the frequency of electric charge oscillations becomes much smaller than the frequency of the oscillations of the chiral charge.
arXiv Detail & Related papers (2023-05-09T18:00:01Z) - Spin Current Density Functional Theory of the Quantum Spin-Hall Phase [59.50307752165016]
We apply the spin current density functional theory to the quantum spin-Hall phase.
We show that the explicit account of spin currents in the electron-electron potential of the SCDFT is key to the appearance of a Dirac cone.
arXiv Detail & Related papers (2022-08-29T20:46:26Z) - In-Gap Band Formation in a Periodically Driven Charge Density Wave
Insulator [68.8204255655161]
Periodically driven quantum many-body systems host unconventional behavior not realized at equilibrium.
We investigate such a setup for strongly interacting spinless fermions on a chain, which at zero temperature and strong interactions form a charge density wave insulator.
arXiv Detail & Related papers (2022-05-19T13:28:47Z) - Nanoscale inhomogeneity of charge density waves dynamics in
La$_{2-x}$Sr$_x$NiO$_4$ [47.660421557330174]
We focus here on the spatial heterogeneity of the motion of charge density wave (CDW) at nanoscale in the archetypal case of La$_2-x$Sr$_x$NiO$_4+y$ perovskite at low temperature.
We report compelling evidence that the unconventional increasing motion of CDW at T 50K is related with the decreasing of its correlation length using resonant soft X-ray photon correlation spectroscopy (XPCS)
The key result of this work is the direct visualization of nanoscale spatial inhomogeneity of CDW relaxation dynamics by scanning micro X-ray diffraction
arXiv Detail & Related papers (2022-03-26T12:19:11Z) - Quantum correlations, entanglement spectrum and coherence of
two-particle reduced density matrix in the Extended Hubbard Model [62.997667081978825]
We study the ground state properties of the one-dimensional extended Hubbard model at half-filling.
In particular, in the superconducting region, we obtain that the entanglement spectrum signals a transition between a dominant singlet (SS) to triplet (TS) pairing ordering in the system.
arXiv Detail & Related papers (2021-10-29T21:02:24Z) - Rotating Majorana Zero Modes in a disk geometry [75.34254292381189]
We study the manipulation of Majorana zero modes in a thin disk made from a $p$-wave superconductor.
We analyze the second-order topological corner modes that arise when an in-plane magnetic field is applied.
We show that oscillations persist even in the adiabatic phase because of a frequency independent coupling between zero modes and excited states.
arXiv Detail & Related papers (2021-09-08T11:18:50Z) - Band strutures of hybrid graphene quantum dots with magnetic flux [0.0]
We study the band structures of hybrid graphene quantum dots subject to a magnetic flux and electrostatic potential.
For the valley $K'$, it is found that the magnetic flux strongly acts by decreasing the gap and shifting energy levels away from zero radius with some oscillations.
arXiv Detail & Related papers (2021-07-30T12:04:13Z) - Crystallization of Bosonic Quantum Hall States [0.0]
We study the purely interaction-driven dynamics of a Landau gauge Bose-Einstein condensate in and near the lowest Landau level (LLL)
We observe a spontaneous crystallization driven by condensation of magneto-rotons, excitations visible as density modulations at the magnetic length.
arXiv Detail & Related papers (2021-06-21T17:56:11Z) - Visualizing spinon Fermi surfaces with time-dependent spectroscopy [62.997667081978825]
We propose applying time-dependent photo-emission spectroscopy, an established tool in solid state systems, in cold atom quantum simulators.
We show in exact diagonalization simulations of the one-dimensional $t-J$ model that the spinons start to populate previously unoccupied states in an effective band structure.
The dependence of the spectral function on the time after the pump pulse reveals collective interactions among spinons.
arXiv Detail & Related papers (2021-05-27T18:00:02Z) - Tuning the topology of $p$-wave superconductivity in an analytically
solvable two-band model [0.0]
We introduce and solve a two-band model of spinless fermions with $p_x$-wave pairing on a square lattice.
We show that its phase diagram contains a topologically nontrivial weak pairing phase as well as a trivial strong pairing phase.
arXiv Detail & Related papers (2020-10-01T01:20:46Z) - Fractional quantum Hall physics and higher-order momentum correlations
in a few spinful fermionic contact-interacting ultracold atoms in rotating
traps [0.0]
This paper provides benchmark results for $N$-body spin-unresolved, as well as spin-resolved, momentum correlations measurable in time-of-flight experiments with individual particle detection.
The application of a small perturbing stirring potential induces, at the ensuing avoided crossings, formation of symmetry broken states exhibiting ordered polygonal-ring structures.
Analysis of the calculated LLL wavefunction enables a two-dimensional generalization of the Girardeau one-dimensional 'fermionization' scheme, originally invoked for mapping of bosonic-type wave functions to those of spinless fermions.
arXiv Detail & Related papers (2020-06-17T02:08:13Z) - Zitterbewegung and Klein-tunneling phenomena for transient quantum waves [77.34726150561087]
We show that the Zitterbewegung effect manifests itself as a series of quantum beats of the particle density in the long-time limit.
We also find a time-domain where the particle density of the point source is governed by the propagation of a main wavefront.
The relative positions of these wavefronts are used to investigate the time-delay of quantum waves in the Klein-tunneling regime.
arXiv Detail & Related papers (2020-03-09T21:27:02Z) - Quantum dynamics in strongly driven random dipolar magnets [0.0]
We show that destructive interference between two almost degenerate pathways burns spectral holes in the magnetic susceptibility of strongly driven magnetic moments.
For larger clusters of magnetic moments, the corresponding level schemes separate into almost isolated many-body $Lambda$-schemes.
This enables the observation of Fano resonances, caused by many-body quantum corrections to the common Ising approximation also in the thermodynamic limit.
arXiv Detail & Related papers (2020-02-18T19:09:29Z) - Parton theory of ARPES spectra in anti-ferromagnetic Mott insulators [0.0]
We study ARPES spectra of a single mobile hole in the $t-J$ model.
We conjecture a one-to-one relation of the one-dopant spectral function and the spectrum of a constituting spinon in the emphundoped parent AFM.
Our conjecture suggests that ARPES measurements in the pseudogap phase of cuprates can directly reveal the Dirac-fermion nature of the constituting spinons.
arXiv Detail & Related papers (2020-01-15T19:00:08Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.