Solving Partial Differential Equations with Random Feature Models
- URL: http://arxiv.org/abs/2501.00288v1
- Date: Tue, 31 Dec 2024 05:48:31 GMT
- Title: Solving Partial Differential Equations with Random Feature Models
- Authors: Chunyang Liao,
- Abstract summary: We introduce a random feature based framework toward efficiently solving PDEs.
In contrast to the state-of-the-art solvers that face challenges with a large number of collocation points, our proposed method reduces the computational complexity.
- Score: 1.3597551064547502
- License:
- Abstract: Machine learning based partial differential equations (PDEs) solvers have received great attention in recent years. Most progress in this area has been driven by deep neural networks such as physics-informed neural networks (PINNs) and kernel method. In this paper, we introduce a random feature based framework toward efficiently solving PDEs. Random feature method was originally proposed to approximate large-scale kernel machines and can be viewed as a shallow neural network as well. We provide an error analysis for our proposed method along with comprehensive numerical results on several PDE benchmarks. In contrast to the state-of-the-art solvers that face challenges with a large number of collocation points, our proposed method reduces the computational complexity. Moreover, the implementation of our method is simple and does not require additional computational resources. Due to the theoretical guarantee and advantages in computation, our approach is proven to be efficient for solving PDEs.
Related papers
- Solving Poisson Equations using Neural Walk-on-Spheres [80.1675792181381]
We propose Neural Walk-on-Spheres (NWoS), a novel neural PDE solver for the efficient solution of high-dimensional Poisson equations.
We demonstrate the superiority of NWoS in accuracy, speed, and computational costs.
arXiv Detail & Related papers (2024-06-05T17:59:22Z) - Solving partial differential equations with sampled neural networks [1.8590821261905535]
Approximation of solutions to partial differential equations (PDE) is an important problem in computational science and engineering.
We discuss how sampling the hidden weights and biases of the ansatz network from data-agnostic and data-dependent probability distributions allows us to progress on both challenges.
arXiv Detail & Related papers (2024-05-31T14:24:39Z) - Constrained or Unconstrained? Neural-Network-Based Equation Discovery from Data [0.0]
We represent the PDE as a neural network and use an intermediate state representation similar to a Physics-Informed Neural Network (PINN)
We present a penalty method and a widely used trust-region barrier method to solve this constrained optimization problem.
Our results on the Burgers' and the Korteweg-De Vreis equations demonstrate that the latter constrained method outperforms the penalty method.
arXiv Detail & Related papers (2024-05-30T01:55:44Z) - RoPINN: Region Optimized Physics-Informed Neural Networks [66.38369833561039]
Physics-informed neural networks (PINNs) have been widely applied to solve partial differential equations (PDEs)
This paper proposes and theoretically studies a new training paradigm as region optimization.
A practical training algorithm, Region Optimized PINN (RoPINN), is seamlessly derived from this new paradigm.
arXiv Detail & Related papers (2024-05-23T09:45:57Z) - A Gaussian Process Framework for Solving Forward and Inverse Problems Involving Nonlinear Partial Differential Equations [0.0]
We introduce kernel-weighted Corrective Residuals (CoRes) to integrate the strengths of kernel methods and deep NNs for solving nonlinear PDE systems.
CoRes consistently outperforms competing methods in solving a broad range of benchmark problems.
We believe our findings have the potential to spark a renewed interest in leveraging kernel methods for solving PDEs.
arXiv Detail & Related papers (2024-01-07T14:09:42Z) - Meta-learning of Physics-informed Neural Networks for Efficiently
Solving Newly Given PDEs [33.072056425485115]
We propose a neural network-based meta-learning method to efficiently solve partial differential equation (PDE) problems.
The proposed method is designed to meta-learn how to solve a wide variety of PDE problems, and uses the knowledge for solving newly given PDE problems.
We demonstrate that our proposed method outperforms existing methods in predicting solutions of PDE problems.
arXiv Detail & Related papers (2023-10-20T04:35:59Z) - Optimizing Solution-Samplers for Combinatorial Problems: The Landscape
of Policy-Gradient Methods [52.0617030129699]
We introduce a novel theoretical framework for analyzing the effectiveness of DeepMatching Networks and Reinforcement Learning methods.
Our main contribution holds for a broad class of problems including Max-and Min-Cut, Max-$k$-Bipartite-Bi, Maximum-Weight-Bipartite-Bi, and Traveling Salesman Problem.
As a byproduct of our analysis we introduce a novel regularization process over vanilla descent and provide theoretical and experimental evidence that it helps address vanishing-gradient issues and escape bad stationary points.
arXiv Detail & Related papers (2023-10-08T23:39:38Z) - A physics-informed neural network framework for modeling obstacle-related equations [3.687313790402688]
Physics-informed neural networks (PINNs) are an attractive tool for solving partial differential equations based on sparse and noisy data.
Here we extend PINNs to solve obstacle-related PDEs which present a great computational challenge.
The performance of the proposed PINNs is demonstrated in multiple scenarios for linear and nonlinear PDEs subject to regular and irregular obstacles.
arXiv Detail & Related papers (2023-04-07T09:22:28Z) - Monte Carlo Neural PDE Solver for Learning PDEs via Probabilistic Representation [59.45669299295436]
We propose a Monte Carlo PDE solver for training unsupervised neural solvers.
We use the PDEs' probabilistic representation, which regards macroscopic phenomena as ensembles of random particles.
Our experiments on convection-diffusion, Allen-Cahn, and Navier-Stokes equations demonstrate significant improvements in accuracy and efficiency.
arXiv Detail & Related papers (2023-02-10T08:05:19Z) - Learning Physics-Informed Neural Networks without Stacked
Back-propagation [82.26566759276105]
We develop a novel approach that can significantly accelerate the training of Physics-Informed Neural Networks.
In particular, we parameterize the PDE solution by the Gaussian smoothed model and show that, derived from Stein's Identity, the second-order derivatives can be efficiently calculated without back-propagation.
Experimental results show that our proposed method can achieve competitive error compared to standard PINN training but is two orders of magnitude faster.
arXiv Detail & Related papers (2022-02-18T18:07:54Z) - Large-scale Neural Solvers for Partial Differential Equations [48.7576911714538]
Solving partial differential equations (PDE) is an indispensable part of many branches of science as many processes can be modelled in terms of PDEs.
Recent numerical solvers require manual discretization of the underlying equation as well as sophisticated, tailored code for distributed computing.
We examine the applicability of continuous, mesh-free neural solvers for partial differential equations, physics-informed neural networks (PINNs)
We discuss the accuracy of GatedPINN with respect to analytical solutions -- as well as state-of-the-art numerical solvers, such as spectral solvers.
arXiv Detail & Related papers (2020-09-08T13:26:51Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.