論文の概要: Research on vehicle detection based on improved YOLOv8 network
- arxiv url: http://arxiv.org/abs/2501.00300v1
- Date: Tue, 31 Dec 2024 06:19:26 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-01-05 17:15:59.450489
- Title: Research on vehicle detection based on improved YOLOv8 network
- Title(参考訳): 改良型YOLOv8ネットワークによる車両検出に関する研究
- Authors: Haocheng Guo, Yaqiong Zhang, Lieyang Chen, Arfat Ahmad Khan,
- Abstract要約: 本稿では,改良型YOLOv8車両検出手法を提案する。
改良されたモデルは98.3%、89.1%、そして88.4%の精度で車、人、オートバイを検出できる。
- 参考スコア(独自算出の注目度): 0.0
- License:
- Abstract: The key to ensuring the safe obstacle avoidance function of autonomous driving systems lies in the use of extremely accurate vehicle recognition techniques. However, the variability of the actual road environment and the diverse characteristics of vehicles and pedestrians together constitute a huge obstacle to improving detection accuracy, posing a serious challenge to the realization of this goal. To address the above issues, this paper proposes an improved YOLOv8 vehicle detection method. Specifically, taking the YOLOv8n-seg model as the base model, firstly, the FasterNet network is used to replace the backbone network to achieve the purpose of reducing the computational complexity and memory while improving the detection accuracy and speed; secondly, the feature enhancement is achieved by adding the attention mechanism CBAM to the Neck; and lastly, the loss function CIoU is modified to WIoU, which optimizes the detection box localization while improving the segmentation accuracy. The results show that the improved model achieves 98.3%, 89.1% and 88.4% detection accuracy for car, Person and Motorcycle. Compared with the pre-improvement and YOLOv9 models in six metrics such as Precision.
- Abstract(参考訳): 自動運転システムの安全な障害物回避機能を確保する鍵は、極めて正確な車両認識技術を使用することにある。
しかし、実際の道路環境の変動と車両と歩行者の多様な特性は、検出精度を向上させるための大きな障害となり、この目標の実現に深刻な課題が生じる。
上記の課題に対処するため, 改良型YOLOv8車両検出手法を提案する。
具体的には、YOLOv8n-segモデルをベースモデルとして、まず、FasterNetネットワークを用いて、検出精度と速度を改善しつつ、計算複雑性とメモリの低減を図る目的で、バックボーンネットワークを置き換え、次に、注目機構CBAMをネックに追加して機能強化を行い、最後に、損失関数CIoUをWIoUに修正し、セグメンテーション精度を改善しながら検出ボックスのローカライゼーションを最適化する。
その結果,車,人,オートバイの精度は98.3%,89.1%,88.4%であった。
Precisionのような6つのメトリクスの事前改善モデルとYOLOv9モデルと比較する。
関連論文リスト
- Uncertainty Estimation for 3D Object Detection via Evidential Learning [63.61283174146648]
本稿では,3次元検出器における鳥の視線表示における明らかな学習損失を利用して,3次元物体検出の不確かさを定量化するためのフレームワークを提案する。
本研究では,これらの不確実性評価の有効性と重要性を,分布外シーンの特定,局所化の不十分な物体の発見,および(偽陰性)検出の欠如について示す。
論文 参考訳(メタデータ) (2024-10-31T13:13:32Z) - Research on target detection method of distracted driving behavior based on improved YOLOv8 [6.405098280736171]
本研究では,BOTNetモジュール,GAMアテンション機構,EIoU損失関数を統合することで,従来のYOLOv8モデルに基づく改良されたYOLOv8検出手法を提案する。
実験の結果, 精度は99.4%であり, 検出速度, 精度ともに良好であった。
論文 参考訳(メタデータ) (2024-07-02T00:43:41Z) - Optimization of Autonomous Driving Image Detection Based on RFAConv and Triplet Attention [1.345669927504424]
本稿では, YOLOv8モデルの拡張のための総合的アプローチを提案する。
C2f_RFAConvモジュールは、機能の抽出効率を高めるために元のモジュールを置き換える。
Triplet Attentionメカニズムは、ターゲット検出の強化のための特徴焦点を強化する。
論文 参考訳(メタデータ) (2024-06-25T08:59:33Z) - Unsupervised Domain Adaptation for Self-Driving from Past Traversal
Features [69.47588461101925]
本研究では,新しい運転環境に3次元物体検出器を適応させる手法を提案する。
提案手法は,空間的量子化履歴特徴を用いたLiDARに基づく検出モデルを強化する。
実世界のデータセットの実験では、大幅な改善が示されている。
論文 参考訳(メタデータ) (2023-09-21T15:00:31Z) - Unsupervised Adaptation from Repeated Traversals for Autonomous Driving [54.59577283226982]
自動運転車はエンドユーザー環境に一般化し、確実に動作させなければならない。
潜在的な解決策の1つは、エンドユーザの環境から収集されたラベルのないデータを活用することである。
適応過程を監督する信頼性のある信号はターゲット領域に存在しない。
この単純な仮定は、ターゲット領域上の3次元物体検出器の反復的自己学習を可能にする強力な信号を得るのに十分であることを示す。
論文 参考訳(メタデータ) (2023-03-27T15:07:55Z) - Research on road object detection algorithm based on improved YOLOX [3.5539647094032705]
道路物体検出においては,小型物体と閉塞物体の除去が重要な問題である。
本稿では,予測ボックスと実ボックスの形状整合性を改善するために,DecIoU境界ボックス回帰損失関数を提案し,Push Lossを導入して境界ボックス回帰損失関数をさらに最適化する。
KITTIデータセットに対する多数の実験により,提案手法の有効性が示された。
論文 参考訳(メタデータ) (2023-02-16T08:58:42Z) - Variational Voxel Pseudo Image Tracking [127.46919555100543]
不確実性推定は、ロボット工学や自律運転といった重要な問題にとって重要なタスクである。
本稿では,3次元物体追跡のためのVoxel Pseudo Image Tracking (VPIT) の変分ニューラルネットワークによるバージョンを提案する。
論文 参考訳(メタデータ) (2023-02-12T13:34:50Z) - Threat Detection In Self-Driving Vehicles Using Computer Vision [0.0]
ダッシュカムビデオを用いた自動運転車の脅威検出機構を提案する。
オブジェクトを識別するためのYOLO,高度な車線検出アルゴリズム,カメラからの距離を測定するマルチレグレッションモデルという,4つの主要なコンポーネントがある。
提案した脅威検出モデル(TDM)の最終的な精度は82.65%である。
論文 参考訳(メタデータ) (2022-09-06T12:01:07Z) - Improved YOLOv5 network for real-time multi-scale traffic sign detection [4.5598087061051755]
本稿では,アダプティブアテンションモジュール (AAM) と機能拡張モジュール (FEM) を利用して特徴マップ生成の過程での情報損失を低減する機能ピラミッドモデル AF-FPN を提案する。
YOLOv5の本来の特徴ピラミッドネットワークをAF-FPNに置き換え、YOLOv5ネットワークのマルチスケールターゲットの検出性能を向上させる。
論文 参考訳(メタデータ) (2021-12-16T11:02:12Z) - Exploiting Playbacks in Unsupervised Domain Adaptation for 3D Object
Detection [55.12894776039135]
ディープラーニングに基づく最先端の3Dオブジェクト検出器は、有望な精度を示しているが、ドメインの慣用性に過度に適合する傾向がある。
対象領域の擬似ラベルの検出器を微調整することで,このギャップを大幅に削減する新たな学習手法を提案する。
5つの自律運転データセットにおいて、これらの擬似ラベル上の検出器を微調整することで、新しい運転環境への領域ギャップを大幅に減らすことを示す。
論文 参考訳(メタデータ) (2021-03-26T01:18:11Z) - Uncertainty-Aware Deep Calibrated Salient Object Detection [74.58153220370527]
既存のディープニューラルネットワークに基づくサルエントオブジェクト検出(SOD)手法は主に高いネットワーク精度の追求に重点を置いている。
これらの手法は、信頼不均衡問題として知られるネットワーク精度と予測信頼の間のギャップを見落としている。
我々は,不確実性を考慮した深部SODネットワークを導入し,深部SODネットワークの過信を防止するための2つの戦略を提案する。
論文 参考訳(メタデータ) (2020-12-10T23:28:36Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。