論文の概要: A Light Perspective for 3D Object Detection
- arxiv url: http://arxiv.org/abs/2503.07133v1
- Date: Mon, 10 Mar 2025 10:03:23 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-03-11 15:47:55.189874
- Title: A Light Perspective for 3D Object Detection
- Title(参考訳): 3次元物体検出のための光の展望
- Authors: Marcelo Eduardo Pederiva, José Mario De Martino, Alessandro Zimmer,
- Abstract要約: 本稿では,最先端のDeep Learning技術を特徴抽出に取り入れた新しい手法を提案する。
私たちのモデルであるNextBEVは、ResNet50やMobileNetV3といった既存の機能抽出ツールを超えています。
これらの軽量な提案を融合することにより、VoxelNetベースのモデルの精度を2.93%向上し、PointPillarベースのモデルのF1スコアを約20%改善しました。
- 参考スコア(独自算出の注目度): 46.23578780480946
- License:
- Abstract: Comprehending the environment and accurately detecting objects in 3D space are essential for advancing autonomous vehicle technologies. Integrating Camera and LIDAR data has emerged as an effective approach for achieving high accuracy in 3D Object Detection models. However, existing methodologies often rely on heavy, traditional backbones that are computationally demanding. This paper introduces a novel approach that incorporates cutting-edge Deep Learning techniques into the feature extraction process, aiming to create more efficient models without compromising performance. Our model, NextBEV, surpasses established feature extractors like ResNet50 and MobileNetV2. On the KITTI 3D Monocular detection benchmark, NextBEV achieves an accuracy improvement of 2.39%, having less than 10% of the MobileNetV3 parameters. Moreover, we propose changes in LIDAR backbones that decreased the original inference time to 10 ms. Additionally, by fusing these lightweight proposals, we have enhanced the accuracy of the VoxelNet-based model by 2.93% and improved the F1-score of the PointPillar-based model by approximately 20%. Therefore, this work contributes to establishing lightweight and powerful models for individual or fusion techniques, making them more suitable for onboard implementations.
- Abstract(参考訳): 環境を補完し、3次元空間における物体を正確に検出することは、自動運転車技術の進歩に不可欠である。
カメラとLIDARデータの統合は,3次元物体検出モデルにおける高精度化に有効な手法として浮上している。
しかし、既存の方法論は計算的に要求される重い伝統的なバックボーンに依存していることが多い。
本稿では,最先端のDeep Learning手法を特徴抽出プロセスに取り入れた新しい手法を提案する。
私たちのモデルであるNextBEVは、ResNet50やMobileNetV2といった既存の機能抽出ツールを超えています。
KITTI 3D Monocular Detectionベンチマークでは、NextBEVは2.39%の精度向上を実現しており、MobileNetV3パラメータの10%未満である。
さらに,これらの軽量な提案を融合することで,VoxelNetベースモデルの精度が2.93%向上し,PointPillarベースモデルのF1スコアが約20%向上した。
したがって、この研究は個別または融合技術のための軽量で強力なモデルを確立することに寄与し、車載実装にもっと適している。
関連論文リスト
- MonoDINO-DETR: Depth-Enhanced Monocular 3D Object Detection Using a Vision Foundation Model [2.0624236247076397]
本研究では,視覚変換器(ViT)をベースとした基礎モデルをバックボーンとし,世界的特徴を抽出して深度推定を行う。
検出変換器(DETR)アーキテクチャを統合し、深度推定と物体検出性能を1段階的に改善する。
提案モデルは、KITTIの3Dベンチマークと高標高レース環境から収集したカスタムデータセットの評価により、最近の最先端手法よりも優れている。
論文 参考訳(メタデータ) (2025-02-01T04:37:13Z) - GOOD: General Optimization-based Fusion for 3D Object Detection via
LiDAR-Camera Object Candidates [10.534984939225014]
3次元物体検出は、自律運転における知覚タスクの中核となる基礎となる。
Goodは汎用的な最適化ベースの融合フレームワークで、追加のモデルをトレーニングすることなく、満足度の高い検出を実現できる。
nuScenesとKITTIデータセットの両方の実験を行い、その結果、GOODはPointPillarsと比較してmAPスコアで9.1%上回っていることが示された。
論文 参考訳(メタデータ) (2023-03-17T07:05:04Z) - PV-RCNN++: Point-Voxel Feature Set Abstraction With Local Vector
Representation for 3D Object Detection [100.60209139039472]
点雲からの正確な3次元検出を行うために,PointVoxel Region based Convolution Neural Networks (PVRCNNs)を提案する。
提案するPV-RCNNは,Openデータセットと高競争性KITTIベンチマークの両方において,従来の最先端3D検出方法よりも大幅に優れていた。
論文 参考訳(メタデータ) (2021-01-31T14:51:49Z) - SA-Det3D: Self-Attention Based Context-Aware 3D Object Detection [9.924083358178239]
本稿では,3次元物体検出におけるコンテキストモデリングのための2種類の自己注意法を提案する。
まず,現状のbev,voxel,ポイントベース検出器にペアワイズ自着機構を組み込む。
次に,ランダムにサンプリングされた位置の変形を学習することにより,最も代表的な特徴のサブセットをサンプリングするセルフアテンション変種を提案する。
論文 参考訳(メタデータ) (2021-01-07T18:30:32Z) - Reinforced Axial Refinement Network for Monocular 3D Object Detection [160.34246529816085]
モノクロ3次元物体検出は、2次元入力画像から物体の位置と特性を抽出することを目的としている。
従来のアプローチでは、空間から3D境界ボックスをサンプリングし、対象オブジェクトと各オブジェクトの関係を推定するが、有効サンプルの確率は3D空間で比較的小さい。
我々は,まず最初の予測から始めて,各ステップで1つの3dパラメータだけを変えて,基礎的真理に向けて徐々に洗練することを提案する。
これは、いくつかのステップの後に報酬を得るポリシーを設計する必要があるため、最適化するために強化学習を採用します。
論文 参考訳(メタデータ) (2020-08-31T17:10:48Z) - InfoFocus: 3D Object Detection for Autonomous Driving with Dynamic
Information Modeling [65.47126868838836]
動的情報モデリングを用いた新しい3次元オブジェクト検出フレームワークを提案する。
粗い予測は、ボクセルベースの領域提案ネットワークを介して第1段階で生成される。
大規模なnuScenes 3D検出ベンチマークで実験を行った。
論文 参考訳(メタデータ) (2020-07-16T18:27:08Z) - PerMO: Perceiving More at Once from a Single Image for Autonomous
Driving [76.35684439949094]
単一画像から完全テクスチャ化された車両の3次元モデルを検出し,セグメント化し,再構成する新しい手法を提案する。
私たちのアプローチは、ディープラーニングの強みと従来のテクニックの優雅さを組み合わせています。
我々はこれらのアルゴリズムを自律運転システムに統合した。
論文 参考訳(メタデータ) (2020-07-16T05:02:45Z) - Improving 3D Object Detection through Progressive Population Based
Augmentation [91.56261177665762]
本稿では3次元オブジェクト検出のためのデータ拡張ポリシーの設計を自動化するための最初の試みを示す。
このアルゴリズムは,探索空間を狭め,過去の反復で発見された最良のパラメータを採用することで,拡張戦略の最適化を学習する。
PPBAは, 拡張のないベースライン3次元検出モデルよりも最大10倍のデータ効率が高く, ラベル付きモデルよりもはるかに少ない精度で3次元検出モデルが競合精度を達成できる可能性が示唆された。
論文 参考訳(メタデータ) (2020-04-02T05:57:02Z) - Generative Multi-Stream Architecture For American Sign Language
Recognition [15.717424753251674]
複雑なアプリケーションのための機能豊かさの低いデータセットのトレーニングは、人間のパフォーマンスよりも最適な収束を制限します。
本稿では,非現実性を危険にさらすことなく機能収束を改善することを目的とした,新たなハードウェアの必要性を排除した生成型マルチストリームアーキテクチャを提案する。
提案手法は,従来のモデルよりも0.45%,5.53%の精度で,トレーニングから1.42%の精度で95.62%の精度を達成している。
論文 参考訳(メタデータ) (2020-03-09T21:04:51Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。