diffIRM: A Diffusion-Augmented Invariant Risk Minimization Framework for Spatiotemporal Prediction over Graphs
- URL: http://arxiv.org/abs/2501.00305v1
- Date: Tue, 31 Dec 2024 06:45:47 GMT
- Title: diffIRM: A Diffusion-Augmented Invariant Risk Minimization Framework for Spatiotemporal Prediction over Graphs
- Authors: Zhaobin Mo, Haotian Xiang, Xuan Di,
- Abstract summary: Intemporal prediction over graphs (GSTP) is challenging, because real-world data suffers from the Out-of-Distribution (OOD) problem.
In this study, we propose a diffusion-augmented invariant risk minimization (diffIRM) framework that combines these two principles.
- Score: 6.677219861416146
- License:
- Abstract: Spatiotemporal prediction over graphs (STPG) is challenging, because real-world data suffers from the Out-of-Distribution (OOD) generalization problem, where test data follow different distributions from training ones. To address this issue, Invariant Risk Minimization (IRM) has emerged as a promising approach for learning invariant representations across different environments. However, IRM and its variants are originally designed for Euclidean data like images, and may not generalize well to graph-structure data such as spatiotemporal graphs due to spatial correlations in graphs. To overcome the challenge posed by graph-structure data, the existing graph OOD methods adhere to the principles of invariance existence, or environment diversity. However, there is little research that combines both principles in the STPG problem. A combination of the two is crucial for efficiently distinguishing between invariant features and spurious ones. In this study, we fill in this research gap and propose a diffusion-augmented invariant risk minimization (diffIRM) framework that combines these two principles for the STPG problem. Our diffIRM contains two processes: i) data augmentation and ii) invariant learning. In the data augmentation process, a causal mask generator identifies causal features and a graph-based diffusion model acts as an environment augmentor to generate augmented spatiotemporal graph data. In the invariant learning process, an invariance penalty is designed using the augmented data, and then serves as a regularizer for training the spatiotemporal prediction model. The real-world experiment uses three human mobility datasets, i.e. SafeGraph, PeMS04, and PeMS08. Our proposed diffIRM outperforms baselines.
Related papers
- Generative Risk Minimization for Out-of-Distribution Generalization on Graphs [71.48583448654522]
We propose an innovative framework, named Generative Risk Minimization (GRM), designed to generate an invariant subgraph for each input graph to be classified, instead of extraction.
We conduct extensive experiments across a variety of real-world graph datasets for both node-level and graph-level OOD generalization.
arXiv Detail & Related papers (2025-02-11T21:24:13Z) - Invariant Graph Learning Meets Information Bottleneck for Out-of-Distribution Generalization [9.116601683256317]
In this work, we propose a novel framework, called Invariant Graph Learning based on Information bottleneck theory (InfoIGL)
Specifically, InfoIGL introduces a redundancy filter to compress task-irrelevant information related to environmental factors.
Experiments on both synthetic and real-world datasets demonstrate that our method achieves state-of-the-art performance under OOD generalization.
arXiv Detail & Related papers (2024-08-03T07:38:04Z) - Empowering Graph Invariance Learning with Deep Spurious Infomax [27.53568333416706]
We introduce a novel graph invariance learning paradigm, which induces a robust and general inductive bias.
EQuAD shows stable and enhanced performance across different degrees of bias in synthetic datasets and challenging real-world datasets up to $31.76%$.
arXiv Detail & Related papers (2024-07-13T14:18:47Z) - Does Invariant Graph Learning via Environment Augmentation Learn
Invariance? [39.08988313527199]
Invariant graph representation learning aims to learn the invariance among data from different environments for out-of-distribution generalization on graphs.
We develop a set of minimal assumptions, including variation sufficiency and variation consistency, for feasible invariant graph learning.
We show that extracting the maximally invariant subgraph to the proxy predictions provably identifies the underlying invariant subgraph for successful OOD generalization.
arXiv Detail & Related papers (2023-10-29T14:57:37Z) - Graph Out-of-Distribution Generalization with Controllable Data
Augmentation [51.17476258673232]
Graph Neural Network (GNN) has demonstrated extraordinary performance in classifying graph properties.
Due to the selection bias of training and testing data, distribution deviation is widespread.
We propose OOD calibration to measure the distribution deviation of virtual samples.
arXiv Detail & Related papers (2023-08-16T13:10:27Z) - Unleashing the Power of Graph Data Augmentation on Covariate
Distribution Shift [50.98086766507025]
We propose a simple-yet-effective data augmentation strategy, Adversarial Invariant Augmentation (AIA)
AIA aims to extrapolate and generate new environments, while concurrently preserving the original stable features during the augmentation process.
arXiv Detail & Related papers (2022-11-05T07:55:55Z) - Invariance Principle Meets Out-of-Distribution Generalization on Graphs [66.04137805277632]
Complex nature of graphs thwarts the adoption of the invariance principle for OOD generalization.
domain or environment partitions, which are often required by OOD methods, can be expensive to obtain for graphs.
We propose a novel framework to explicitly model this process using a contrastive strategy.
arXiv Detail & Related papers (2022-02-11T04:38:39Z) - Handling Distribution Shifts on Graphs: An Invariance Perspective [78.31180235269035]
We formulate the OOD problem on graphs and develop a new invariant learning approach, Explore-to-Extrapolate Risk Minimization (EERM)
EERM resorts to multiple context explorers that are adversarially trained to maximize the variance of risks from multiple virtual environments.
We prove the validity of our method by theoretically showing its guarantee of a valid OOD solution.
arXiv Detail & Related papers (2022-02-05T02:31:01Z) - Discovering Invariant Rationales for Graph Neural Networks [104.61908788639052]
Intrinsic interpretability of graph neural networks (GNNs) is to find a small subset of the input graph's features.
We propose a new strategy of discovering invariant rationale (DIR) to construct intrinsically interpretable GNNs.
arXiv Detail & Related papers (2022-01-30T16:43:40Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.