論文の概要: Temporal Dynamics Decoupling with Inverse Processing for Enhancing Human Motion Prediction
- arxiv url: http://arxiv.org/abs/2501.00315v1
- Date: Tue, 31 Dec 2024 07:18:50 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-01-05 17:14:32.738880
- Title: Temporal Dynamics Decoupling with Inverse Processing for Enhancing Human Motion Prediction
- Title(参考訳): 逆処理による時間的ダイナミクスデカップリングによる人間の動作予測の強化
- Authors: Jiexin Wang, Yiju Guo, Bing Su,
- Abstract要約: textbf$TD2IP$は、モーションパターンのより深い理解を促進する。
textbf$TD2IP$は、モーションパターンのより深い理解を促進する。
- 参考スコア(独自算出の注目度): 12.766305983943314
- License:
- Abstract: Exploring the bridge between historical and future motion behaviors remains a central challenge in human motion prediction. While most existing methods incorporate a reconstruction task as an auxiliary task into the decoder, thereby improving the modeling of spatio-temporal dependencies, they overlook the potential conflicts between reconstruction and prediction tasks. In this paper, we propose a novel approach: Temporal Decoupling Decoding with Inverse Processing (\textbf{$TD^2IP$}). Our method strategically separates reconstruction and prediction decoding processes, employing distinct decoders to decode the shared motion features into historical or future sequences. Additionally, inverse processing reverses motion information in the temporal dimension and reintroduces it into the model, leveraging the bidirectional temporal correlation of human motion behaviors. By alleviating the conflicts between reconstruction and prediction tasks and enhancing the association of historical and future information, \textbf{$TD^2IP$} fosters a deeper understanding of motion patterns. Extensive experiments demonstrate the adaptability of our method within existing methods.
- Abstract(参考訳): 歴史的行動と将来の動作の橋渡しを探索することは、人間の動作予測における中心的な課題である。
既存の手法の多くはデコーダに再構成タスクを補助タスクとして組み込むことで、時空間依存のモデリングを改善するが、再構築タスクと予測タスクの潜在的な衝突を見落としている。
本稿では,時間デカップリングデコーディングと逆処理(\textbf{$TD^2IP$})という新しい手法を提案する。
提案手法は, 異なるデコーダを用いて, 共有動作特徴を歴史的又は将来のシーケンスに復号化することにより, 再構成と予測の復号化を戦略的に分離する。
さらに、逆処理は時間次元の動作情報を逆転させ、人間の動作行動の双方向の時間的相関を利用してモデルに再導入する。
再建作業と予測作業の対立を緩和し、歴史情報と将来の情報の関連性を高めることにより、行動パターンのより深い理解を促進する。
既存手法における本手法の適応性を示す実験が盛んである。
関連論文リスト
- Past Movements-Guided Motion Representation Learning for Human Motion Prediction [0.0]
動作表現の強化を目的とした自己教師型学習フレームワークを提案する。
フレームワークは、まず、過去のシーケンスの自己再構成を通じてネットワークを事前訓練し、過去の動きに基づく将来のシーケンスのガイド付き再構築を行う。
提案手法は,Human3.6,3DPW,AMASSデータセットの平均予測誤差を8.8%削減する。
論文 参考訳(メタデータ) (2024-08-04T17:00:37Z) - Generative Hierarchical Temporal Transformer for Hand Pose and Action Modeling [67.94143911629143]
ハンドポーズとアクションをモデル化するための生成型Transformer VAEアーキテクチャを提案する。
手ポーズとアクションのセマンティックな依存性と時間的粒度を忠実にモデル化するために、我々はこのフレームワークを2つのケース化されたVAEブロックに分解する。
その結果,独立解よりも認識と予測の連成モデリングが向上することが示唆された。
論文 参考訳(メタデータ) (2023-11-29T05:28:39Z) - Multiscale Residual Learning of Graph Convolutional Sequence Chunks for
Human Motion Prediction [23.212848643552395]
時間的および空間的依存関係の学習による人間の動作予測のための新しい手法を提案する。
提案手法は,動作予測のためのシーケンス情報を効果的にモデル化し,他の手法よりも優れ,新しい最先端の手法を設定できる。
論文 参考訳(メタデータ) (2023-08-31T15:23:33Z) - Spatio-Temporal Branching for Motion Prediction using Motion Increments [55.68088298632865]
HMP(Human Motion Prediction)はその多種多様な応用により、人気のある研究トピックとして浮上している。
従来の手法は手作りの機能と機械学習技術に依存している。
HMPのためのインクリメンタル情報を用いた時空間分岐ネットワークを提案する。
論文 参考訳(メタデータ) (2023-08-02T12:04:28Z) - Motion-Scenario Decoupling for Rat-Aware Video Position Prediction:
Strategy and Benchmark [49.58762201363483]
本研究では,個人や環境の影響要因を考慮し,生物ロボットの動き予測データセットであるRatPoseを紹介する。
本稿では,シナリオ指向とモーション指向を効果的に分離するDual-stream Motion-Scenario Decouplingフレームワークを提案する。
難易度が異なるタスクに対して,提案したtextitDMSD フレームワークの大幅な性能向上を示す。
論文 参考訳(メタデータ) (2023-05-17T14:14:31Z) - LatentFormer: Multi-Agent Transformer-Based Interaction Modeling and
Trajectory Prediction [12.84508682310717]
将来の車両軌道予測のためのトランスフォーマーモデルであるLatentFormerを提案する。
提案手法をnuScenesベンチマークデータセット上で評価し,提案手法が最先端性能を実現し,トラジェクトリ指標を最大40%向上することを示す。
論文 参考訳(メタデータ) (2022-03-03T17:44:58Z) - Motion Prediction via Joint Dependency Modeling in Phase Space [40.54430409142653]
我々は、運動解剖学の明示的な事前知識を活用するために、新しい畳み込みニューラルモデルを導入する。
次に,個々の関節機能間の暗黙的関係を学習するグローバル最適化モジュールを提案する。
本手法は,大規模な3次元人体動作ベンチマークデータセットを用いて評価する。
論文 参考訳(メタデータ) (2022-01-07T08:30:01Z) - Investigating Pose Representations and Motion Contexts Modeling for 3D
Motion Prediction [63.62263239934777]
歴史的ポーズシーケンスから人間の動きを予測することは、機械が人間と知的な相互作用を成功させるために不可欠である。
本研究では,様々なポーズ表現に関する詳細な研究を行い,その動作予測課題に対する効果に着目した。
AHMR(Attentive Hierarchical Motion Recurrent Network)と呼ばれる新しいRNNアーキテクチャを提案する。
論文 参考訳(メタデータ) (2021-12-30T10:45:22Z) - Learning Temporal Dynamics from Cycles in Narrated Video [85.89096034281694]
時が経つにつれて世界がどのように変化するかをモデル化する学習問題に対する自己監督型ソリューションを提案します。
私たちのモデルは、前方および後方の時間を予測するためにモダリティに依存しない関数を学習します。
将来的な動作の予測や画像の時間的順序付けなど,様々なタスクに対して,学習されたダイナミクスモデルを適用する。
論文 参考訳(メタデータ) (2021-01-07T02:41:32Z) - History Repeats Itself: Human Motion Prediction via Motion Attention [81.94175022575966]
注意に基づくフィードフォワードネットワークを導入し、人間の動きが自分自身を繰り返す傾向にあるという観察を明示的に活用する。
特に,現在動きのコンテキストと過去の動きのサブシーケンスの類似性を捉えるために,動きの注意を抽出することを提案する。
我々は,Human3.6M,AMASS,3DPWを用いて,周期的および非周期的両方の行動に対するアプローチの利点を実証した。
論文 参考訳(メタデータ) (2020-07-23T02:12:27Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。