論文の概要: OVGaussian: Generalizable 3D Gaussian Segmentation with Open Vocabularies
- arxiv url: http://arxiv.org/abs/2501.00326v1
- Date: Tue, 31 Dec 2024 07:55:35 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-01-05 17:15:57.053814
- Title: OVGaussian: Generalizable 3D Gaussian Segmentation with Open Vocabularies
- Title(参考訳): OVGaussian:オープン語彙を用いた一般化可能な3次元ガウスセグメンテーション
- Authors: Runnan Chen, Xiangyu Sun, Zhaoqing Wang, Youquan Liu, Jiepeng Wang, Lingdong Kong, Jiankang Deng, Mingming Gong, Liang Pan, Wenping Wang, Tongliang Liu,
- Abstract要約: textbfOVGaussianは3D textbfGaussian表現に基づいた、一般化可能なtextbfOpen-textbfVocabulary 3Dセマンティックセマンティックセグメンテーションフレームワークである。
まず,3DGSをベースとした大規模3Dシーンデータセット(textbfSegGaussian)を構築し,ガウス点とマルチビュー画像の両方に対して詳細なセマンティックおよびインスタンスアノテーションを提供する。
シーン間のセマンティック・一般化を促進するために,ジェネリック・セマンティック・ラスタライゼーション(GSR)を導入する。
- 参考スコア(独自算出の注目度): 112.80292725951921
- License:
- Abstract: Open-vocabulary scene understanding using 3D Gaussian (3DGS) representations has garnered considerable attention. However, existing methods mostly lift knowledge from large 2D vision models into 3DGS on a scene-by-scene basis, restricting the capabilities of open-vocabulary querying within their training scenes so that lacking the generalizability to novel scenes. In this work, we propose \textbf{OVGaussian}, a generalizable \textbf{O}pen-\textbf{V}ocabulary 3D semantic segmentation framework based on the 3D \textbf{Gaussian} representation. We first construct a large-scale 3D scene dataset based on 3DGS, dubbed \textbf{SegGaussian}, which provides detailed semantic and instance annotations for both Gaussian points and multi-view images. To promote semantic generalization across scenes, we introduce Generalizable Semantic Rasterization (GSR), which leverages a 3D neural network to learn and predict the semantic property for each 3D Gaussian point, where the semantic property can be rendered as multi-view consistent 2D semantic maps. In the next, we propose a Cross-modal Consistency Learning (CCL) framework that utilizes open-vocabulary annotations of 2D images and 3D Gaussians within SegGaussian to train the 3D neural network capable of open-vocabulary semantic segmentation across Gaussian-based 3D scenes. Experimental results demonstrate that OVGaussian significantly outperforms baseline methods, exhibiting robust cross-scene, cross-domain, and novel-view generalization capabilities. Code and the SegGaussian dataset will be released. (https://github.com/runnanchen/OVGaussian).
- Abstract(参考訳): 3D Gaussian (3DGS)表現を用いたオープン語彙シーン理解が注目されている。
しかし,既存の手法では,大規模2次元視覚モデルからの知識をシーンごとに3DGSに引き上げることが多かった。
本稿では,3D の表現に基づく一般化可能な \textbf{O}pen-\textbf{V}ocabulary 3D セマンティックセマンティックセグメンテーションフレームワークである \textbf{OVGaussian} を提案する。
まず,3DGSに基づく大規模3Dシーンデータセットを構築し,ガウス点と多視点画像の両方に対して詳細なセマンティックおよびインスタンスアノテーションを提供する。
シーン間のセマンティック一般化を促進するために,3次元ニューラルネットワークを活用して各3次元ガウス点のセマンティック特性を学習・予測する汎用セマンティックラスタ化(GSR)を導入し,セマンティック特性をマルチビューで一貫した2次元セマンティックマップとして表現する。
次に,SegGaussian内の2次元画像と3次元ガウシアンのオープン語彙アノテーションを利用して,ガウシアンベースの3次元シーン間のオープン語彙セマンティックセグメンテーションが可能な3次元ニューラルネットワークをトレーニングするクロスモーダル一貫性学習(CCL)フレームワークを提案する。
実験により,OVGaussianはベースライン法を著しく上回り,堅牢なクロスシーン,クロスドメイン,新規ビューの一般化能力を示した。
コードとSegGaussianデータセットがリリースされる。
(https://github.com/runnanchen/OVGaussian)。
関連論文リスト
- GSemSplat: Generalizable Semantic 3D Gaussian Splatting from Uncalibrated Image Pairs [33.74118487769923]
GSemSplatは,3次元ガウスに関連付けられた意味表現を,シーンごとの最適化や高密度画像収集,キャリブレーションなしに学習するフレームワークである。
本研究では,2次元空間における領域固有の意味的特徴と文脈認識的意味的特徴を両立させる二重機能アプローチを用いる。
論文 参考訳(メタデータ) (2024-12-22T09:06:58Z) - SuperGSeg: Open-Vocabulary 3D Segmentation with Structured Super-Gaussians [77.77265204740037]
3D Gaussian Splattingは、その効率的なトレーニングとリアルタイムレンダリングで注目を集めている。
我々は,協調型コンテキスト認識シーン表現を促進する新しいアプローチであるSuperGSegを紹介する。
SuperGSegは、オープン語彙オブジェクトローカライゼーションとセマンティックセグメンテーションタスクの両方において、以前の作業より優れている。
論文 参考訳(メタデータ) (2024-12-13T16:01:19Z) - Bootstraping Clustering of Gaussians for View-consistent 3D Scene Understanding [59.51535163599723]
FreeGSは、教師なしセマンティック組み込み3DGSフレームワークで、2Dラベルを必要とせずに、ビュー一貫性のある3Dシーン理解を実現する。
我々は、FreeGSが複雑なデータ前処理作業の負荷を回避しつつ、最先端のメソッドと互換性があることを示す。
論文 参考訳(メタデータ) (2024-11-29T08:52:32Z) - GaussianFormer: Scene as Gaussians for Vision-Based 3D Semantic Occupancy Prediction [70.65250036489128]
3Dのセマンティック占有予測は,周囲のシーンの3Dの微細な形状とセマンティックスを得ることを目的としている。
本稿では,3Dシーンを3Dセマンティック・ガウシアンで表現するオブジェクト中心表現を提案する。
GaussianFormerは17.8%から24.8%のメモリ消費しか持たない最先端のメソッドで同等のパフォーマンスを実現している。
論文 参考訳(メタデータ) (2024-05-27T17:59:51Z) - Semantic Gaussians: Open-Vocabulary Scene Understanding with 3D Gaussian Splatting [27.974762304763694]
セマンティック・ガウシアン(Semantic Gaussians)は,3次元ガウシアン・スプレイティングをベースとした,新しいオープン語彙シーン理解手法である。
既存の手法とは異なり、様々な2次元意味的特徴を3次元ガウスの新たな意味的構成要素にマッピングする多目的投影手法を設計する。
我々は,高速な推論のために,生の3Dガウスから意味成分を直接予測する3Dセマンティックネットワークを構築した。
論文 参考訳(メタデータ) (2024-03-22T21:28:19Z) - GS-CLIP: Gaussian Splatting for Contrastive Language-Image-3D
Pretraining from Real-World Data [73.06536202251915]
ポイントクラウドとして表される3D形状は、画像と言語記述を整列させるために、マルチモーダル事前トレーニングの進歩を実現している。
GS-CLIPは,3D表現を向上させるために,マルチモーダル事前学習に3DGSを導入するための最初の試みである。
論文 参考訳(メタデータ) (2024-02-09T05:46:47Z) - Gaussian Grouping: Segment and Edit Anything in 3D Scenes [65.49196142146292]
ガウシアン・グルーピング(ガウシアン・グルーピング)はガウシアン・スプラッティングを拡張して,オープンワールドの3Dシーンで何かを共同で再構築・分割する。
暗黙のNeRF表現と比較すると,グループ化された3次元ガウシアンは,高画質,微粒度,高効率で,あらゆるものを3次元で再構成,分割,編集することができる。
論文 参考訳(メタデータ) (2023-12-01T17:09:31Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。