Analysis of memory effects in the dynamic evolution of the spin-boson model
- URL: http://arxiv.org/abs/2501.00350v1
- Date: Tue, 31 Dec 2024 08:56:15 GMT
- Title: Analysis of memory effects in the dynamic evolution of the spin-boson model
- Authors: Rayees A Mala, Mehboob Rashid, Muzaffar Qadir Lone,
- Abstract summary: We study the non-Markovian dynamics in the single mode spin-boson model at strong perturbations.
We employ coherence defined by l1-norm to analyze the non-Markovian effects in the spin-boson model.
- Score: 0.0
- License:
- Abstract: Quantum information processing relies on how dynamics unfold in open quantum systems. In this work, we study the non-Markovian dynamics in the single mode spin-boson model at strong couplings. In order to apply perturbation theory, we transform our Hamiltonian to polaron frame, so that the effective system-bath coupling gets reduced. We employ coherence defined by l1-norm to analyze the non-Markovian effects in the spin-boson model. In the transformed frame of reference, the correlation timescales for the bath are significantly shorter than the system's relaxation timescale-a key assumption for Markovian dynamics. However, intriguingly, we demonstrate that under the large polaron theory, the reduced dynamics exhibit effective non-Markovian behaviour within a specific range of couplings, while remaining Markovian beyond this range.
Related papers
- Dynamical signatures of non-Markovianity in a dissipative-driven qubit [0.0]
We investigate signatures of non-Markovianity in the dynamics of a periodically-driven qubit coupled to a bosonic environment.
Non-Markovian features are quantified by comparing on an equal footing the predictions from diverse and complementary approaches to quantum dissipation.
arXiv Detail & Related papers (2024-01-17T15:58:50Z) - Dynamically Emergent Quantum Thermodynamics: Non-Markovian Otto Cycle [49.1574468325115]
We revisit the thermodynamic behavior of the quantum Otto cycle with a focus on memory effects and strong system-bath couplings.
Our investigation is based on an exact treatment of non-Markovianity by means of an exact quantum master equation.
arXiv Detail & Related papers (2023-08-18T11:00:32Z) - Quantum Effects on the Synchronization Dynamics of the Kuramoto Model [62.997667081978825]
We show that quantum fluctuations hinder the emergence of synchronization, albeit not entirely suppressing it.
We derive an analytical expression for the critical coupling, highlighting its dependence on the model parameters.
arXiv Detail & Related papers (2023-06-16T16:41:16Z) - Spin-boson model under dephasing: Markovian vs Non-Markovian dynamics [0.0]
We show that the characteristic frequency of the spin dynamics changes in a simple fashion with dephasing.
Our findings are relevant to quantum simulation of the spin-boson model in the regime of strong coupling in trapped ions and circuit QED architectures.
arXiv Detail & Related papers (2023-04-28T22:07:29Z) - Slow semiclassical dynamics of a two-dimensional Hubbard model in
disorder-free potentials [77.34726150561087]
We show that introduction of harmonic and spin-dependent linear potentials sufficiently validates fTWA for longer times.
In particular, we focus on a finite two-dimensional system and show that at intermediate linear potential strength, the addition of a harmonic potential and spin dependence of the tilt, results in subdiffusive dynamics.
arXiv Detail & Related papers (2022-10-03T16:51:25Z) - Probing dynamics of a two-dimensional dipolar spin ensemble using single
qubit sensor [62.997667081978825]
We experimentally investigate individual spin dynamics in a two-dimensional ensemble of electron spins on the surface of a diamond crystal.
We show that this anomalously slow relaxation rate is due to the presence of strong dynamical disorder.
Our work paves the way towards microscopic study and control of quantum thermalization in strongly interacting disordered spin ensembles.
arXiv Detail & Related papers (2022-07-21T18:00:17Z) - Quantum chaos and thermalization in the two-mode Dicke model [77.34726150561087]
We discuss the onset of quantum chaos and thermalization in the two-mode Dicke model.
The two-mode Dicke model exhibits normal to superradiant quantum phase transition.
We show that the temporal fluctuations of the expectation value of the collective spin observable around its average are small and decrease with the effective system size.
arXiv Detail & Related papers (2022-07-08T11:16:29Z) - Long-time Markovianity of multi-level systems in the rotating wave
approximation [0.0]
We generalize our previous results on a spin-boson model in the rotating wave approximation.
We show that the dynamics is long-time Markovian, i.e. after the bath correlation time all the non-Markovianity could be captured by the renormalization of initial condition and correlation functions.
arXiv Detail & Related papers (2021-05-06T05:04:29Z) - Non-Markovian effects in the spin-boson model at zero temperature [0.0]
We investigate memory effects in the spin-boson model using a recently proposed measure for non-Markovian behavior.
For a fast bath, we find non-Markovian dynamics for a coherently decaying spin at weak system-bath coupling.
arXiv Detail & Related papers (2021-01-23T09:39:22Z) - Memory-Critical Dynamical Buildup of Phonon-Dressed Majorana Fermions [72.46695228124449]
We study a one-dimensional polaronic topological superconductor with phonon-dressed $p$-wave pairing.
We show that when the memory depth increases, the Majorana edge dynamics transits from relaxing monotonically to a plateau of substantial value into a collapse-and-buildup behavior.
arXiv Detail & Related papers (2020-06-24T07:32:51Z) - Dissipative dynamics of an interacting spin system with collective
damping [1.3980986259786221]
Hamiltonian and Lindblad dynamics in quantum systems give rise to non-equillibrium phenomena.
In this paper, we investigate this interplay of dynamics in infinite range Heisenberg model coupled to a non-Markovian bath.
arXiv Detail & Related papers (2018-03-03T14:13:28Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.