Low-Rank Adaptation for Foundation Models: A Comprehensive Review
- URL: http://arxiv.org/abs/2501.00365v1
- Date: Tue, 31 Dec 2024 09:38:55 GMT
- Title: Low-Rank Adaptation for Foundation Models: A Comprehensive Review
- Authors: Menglin Yang, Jialin Chen, Yifei Zhang, Jiahong Liu, Jiasheng Zhang, Qiyao Ma, Harshit Verma, Qianru Zhang, Min Zhou, Irwin King, Rex Ying,
- Abstract summary: Low-Rank Adaptation (LoRA) has emerged as a highly promising approach for mitigating these challenges.
This survey provides the first comprehensive review of LoRA techniques beyond large Language Models to general foundation models.
- Score: 42.23155921954156
- License:
- Abstract: The rapid advancement of foundation modelslarge-scale neural networks trained on diverse, extensive datasetshas revolutionized artificial intelligence, enabling unprecedented advancements across domains such as natural language processing, computer vision, and scientific discovery. However, the substantial parameter count of these models, often reaching billions or trillions, poses significant challenges in adapting them to specific downstream tasks. Low-Rank Adaptation (LoRA) has emerged as a highly promising approach for mitigating these challenges, offering a parameter-efficient mechanism to fine-tune foundation models with minimal computational overhead. This survey provides the first comprehensive review of LoRA techniques beyond large Language Models to general foundation models, including recent techniques foundations, emerging frontiers and applications of low-rank adaptation across multiple domains. Finally, this survey discusses key challenges and future research directions in theoretical understanding, scalability, and robustness. This survey serves as a valuable resource for researchers and practitioners working with efficient foundation model adaptation.
Related papers
- Foundation Models for Remote Sensing and Earth Observation: A Survey [101.77425018347557]
This survey systematically reviews the emerging field of Remote Sensing Foundation Models (RSFMs)
It begins with an outline of their motivation and background, followed by an introduction of their foundational concepts.
We benchmark these models against publicly available datasets, discuss existing challenges, and propose future research directions.
arXiv Detail & Related papers (2024-10-22T01:08:21Z) - Vision Foundation Models in Remote Sensing: A Survey [6.036426846159163]
Foundation models are large-scale, pre-trained AI models capable of performing a wide array of tasks with unprecedented accuracy and efficiency.
This survey aims to serve as a resource for researchers and practitioners by providing a panorama of advances and promising pathways for continued development and application of foundation models in remote sensing.
arXiv Detail & Related papers (2024-08-06T22:39:34Z) - A Survey of Resource-efficient LLM and Multimodal Foundation Models [22.23967603206849]
Large foundation models, including large language models (LLMs), vision transformers (ViTs), diffusion, and multimodal models, are revolutionizing the entire machine learning lifecycle.
However, the substantial advancements in versatility and performance these models offer come at a significant cost in terms of hardware resources.
This survey delves into the critical importance of such research, examining both algorithmic and systemic aspects.
arXiv Detail & Related papers (2024-01-16T03:35:26Z) - The Efficiency Spectrum of Large Language Models: An Algorithmic Survey [54.19942426544731]
The rapid growth of Large Language Models (LLMs) has been a driving force in transforming various domains.
This paper examines the multi-faceted dimensions of efficiency essential for the end-to-end algorithmic development of LLMs.
arXiv Detail & Related papers (2023-12-01T16:00:25Z) - GLUECons: A Generic Benchmark for Learning Under Constraints [102.78051169725455]
In this work, we create a benchmark that is a collection of nine tasks in the domains of natural language processing and computer vision.
We model external knowledge as constraints, specify the sources of the constraints for each task, and implement various models that use these constraints.
arXiv Detail & Related papers (2023-02-16T16:45:36Z) - Towards Geospatial Foundation Models via Continual Pretraining [22.825065739563296]
We propose a novel paradigm for building highly effective foundation models with minimal resource cost and carbon impact.
We first construct a compact yet diverse dataset from multiple sources to promote feature diversity, which we term GeoPile.
Then, we investigate the potential of continual pretraining from large-scale ImageNet-22k models and propose a multi-objective continual pretraining paradigm.
arXiv Detail & Related papers (2023-02-09T07:39:02Z) - Methods for Estimating and Improving Robustness of Language Models [0.0]
Large language models (LLMs) suffer notorious flaws related to their preference for simple, surface-level textual relations over full semantic complexity.
This proposal investigates a common denominator of this problem in their weak ability to generalise outside of the training domain.
We find that incorporating some of these measures in the training objectives leads to enhanced distributional robustness of neural models.
arXiv Detail & Related papers (2022-06-16T21:02:53Z) - Model Reprogramming: Resource-Efficient Cross-Domain Machine Learning [65.268245109828]
In data-rich domains such as vision, language, and speech, deep learning prevails to deliver high-performance task-specific models.
Deep learning in resource-limited domains still faces multiple challenges including (i) limited data, (ii) constrained model development cost, and (iii) lack of adequate pre-trained models for effective finetuning.
Model reprogramming enables resource-efficient cross-domain machine learning by repurposing a well-developed pre-trained model from a source domain to solve tasks in a target domain without model finetuning.
arXiv Detail & Related papers (2022-02-22T02:33:54Z) - Toward Foundation Models for Earth Monitoring: Proposal for a Climate
Change Benchmark [95.19070157520633]
Recent progress in self-supervision shows that pre-training large neural networks on vast amounts of unsupervised data can lead to impressive increases in generalisation for downstream tasks.
Such models, recently coined as foundation models, have been transformational to the field of natural language processing.
We propose to develop a new benchmark comprised of a variety of downstream tasks related to climate change.
arXiv Detail & Related papers (2021-12-01T15:38:19Z) - Deep Model-Based Reinforcement Learning for High-Dimensional Problems, a
Survey [1.2031796234206134]
Model-based reinforcement learning creates an explicit model of the environment dynamics to reduce the need for environment samples.
A challenge for deep model-based methods is to achieve high predictive power while maintaining low sample complexity.
We propose a taxonomy based on three approaches: using explicit planning on given transitions, using explicit planning on learned transitions, and end-to-end learning of both planning and transitions.
arXiv Detail & Related papers (2020-08-11T08:49:04Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.