METANOIA: A Lifelong Intrusion Detection and Investigation System for Mitigating Concept Drift
- URL: http://arxiv.org/abs/2501.00438v1
- Date: Tue, 31 Dec 2024 13:44:27 GMT
- Title: METANOIA: A Lifelong Intrusion Detection and Investigation System for Mitigating Concept Drift
- Authors: Jie Ying, Tiantian Zhu, Aohan Zheng, Tieming Chen, Mingqi Lv, Yan Chen,
- Abstract summary: We present METANOIA, the first lifelong detection system that mitigates the high false positives due to concept drift.
Using state-of-the-art benchmarks, we demonstrate that METANOIA improves precision performance at the window-level, graph-level, and node-level by 30%, 54%, and 29%, respectively.
- Score: 6.988127333802916
- License:
- Abstract: As Advanced Persistent Threat (APT) complexity increases, provenance data is increasingly used for detection. Anomaly-based systems are gaining attention due to their attack-knowledge-agnostic nature and ability to counter zero-day vulnerabilities. However, traditional detection paradigms, which train on offline, limited-size data, often overlook concept drift - unpredictable changes in streaming data distribution over time. This leads to high false positive rates. We propose incremental learning as a new paradigm to mitigate this issue. However, we identify FOUR CHALLENGES while integrating incremental learning as a new paradigm. First, the long-running incremental system must combat catastrophic forgetting (C1) and avoid learning malicious behaviors (C2). Then, the system needs to achieve precise alerts (C3) and reconstruct attack scenarios (C4). We present METANOIA, the first lifelong detection system that mitigates the high false positives due to concept drift. It connects pseudo edges to combat catastrophic forgetting, transfers suspicious states to avoid learning malicious behaviors, filters nodes at the path-level to achieve precise alerts, and constructs mini-graphs to reconstruct attack scenarios. Using state-of-the-art benchmarks, we demonstrate that METANOIA improves precision performance at the window-level, graph-level, and node-level by 30%, 54%, and 29%, respectively, compared to previous approaches.
Related papers
- LLM-based Continuous Intrusion Detection Framework for Next-Gen Networks [0.7100520098029439]
The framework employs a transformer encoder architecture, which captures hidden patterns in a bidirectional manner to differentiate between malicious and legitimate traffic.
The system incrementally identifies unknown attack types by leveraging a Gaussian Mixture Model (GMM) to cluster features derived from high-dimensional BERT embeddings.
Even after integrating additional unknown attack clusters, the framework continues to perform at a high level, achieving 95.6% in both classification accuracy and recall.
arXiv Detail & Related papers (2024-11-04T18:12:14Z) - PARIS: A Practical, Adaptive Trace-Fetching and Real-Time Malicious Behavior Detection System [6.068607290592521]
We propose adaptive trace fetching, lightweight, real-time malicious behavior detection system.
Specifically, we monitor malicious behavior with Event Tracing for Windows (ETW) and learn to selectively collect maliciousness-related APIs or call stacks.
As a result, we can monitor a wider range of APIs and detect more intricate attack behavior.
arXiv Detail & Related papers (2024-11-02T14:52:04Z) - Multi-stage Attack Detection and Prediction Using Graph Neural Networks: An IoT Feasibility Study [2.5325901958283126]
This paper proposes a novel 3-stage intrusion detection system inspired by a simplified version of the Lockheed Martin cyber kill chain.
The proposed approach consists of three models, each responsible for detecting a group of attacks with common characteristics.
Using the ToN IoT dataset, we achieved an average of 94% F1-Score among different stages, outperforming the benchmark approaches.
arXiv Detail & Related papers (2024-04-28T22:11:24Z) - Unsupervised Domain Adaptation for Self-Driving from Past Traversal
Features [69.47588461101925]
We propose a method to adapt 3D object detectors to new driving environments.
Our approach enhances LiDAR-based detection models using spatial quantized historical features.
Experiments on real-world datasets demonstrate significant improvements.
arXiv Detail & Related papers (2023-09-21T15:00:31Z) - Enhancing Infrared Small Target Detection Robustness with Bi-Level
Adversarial Framework [61.34862133870934]
We propose a bi-level adversarial framework to promote the robustness of detection in the presence of distinct corruptions.
Our scheme remarkably improves 21.96% IOU across a wide array of corruptions and notably promotes 4.97% IOU on the general benchmark.
arXiv Detail & Related papers (2023-09-03T06:35:07Z) - Small Object Detection via Coarse-to-fine Proposal Generation and
Imitation Learning [52.06176253457522]
We propose a two-stage framework tailored for small object detection based on the Coarse-to-fine pipeline and Feature Imitation learning.
CFINet achieves state-of-the-art performance on the large-scale small object detection benchmarks, SODA-D and SODA-A.
arXiv Detail & Related papers (2023-08-18T13:13:09Z) - Few-shot Weakly-supervised Cybersecurity Anomaly Detection [1.179179628317559]
We propose an enhancement to an existing few-shot weakly-supervised deep learning anomaly detection framework.
This framework incorporates data augmentation, representation learning and ordinal regression.
We then evaluated and showed the performance of our implemented framework on three benchmark datasets.
arXiv Detail & Related papers (2023-04-15T04:37:54Z) - NetSentry: A Deep Learning Approach to Detecting Incipient Large-scale
Network Attacks [9.194664029847019]
We show how to use Machine Learning for Network Intrusion Detection (NID) in a principled way.
We propose NetSentry, perhaps the first of its kind NIDS that builds on Bi-ALSTM, an original ensemble of sequential neural models.
We demonstrate F1 score gains above 33% over the state-of-the-art, as well as up to 3 times higher rates of detecting attacks such as XSS and web bruteforce.
arXiv Detail & Related papers (2022-02-20T17:41:02Z) - Real-Time Anomaly Detection in Edge Streams [49.26098240310257]
We propose MIDAS, which focuses on detecting microcluster anomalies, or suddenly arriving groups of suspiciously similar edges.
We further propose MIDAS-F, to solve the problem by which anomalies are incorporated into the algorithm's internal states.
Experiments show that MIDAS-F has significantly higher accuracy than MIDAS.
arXiv Detail & Related papers (2020-09-17T17:59:27Z) - Transferable, Controllable, and Inconspicuous Adversarial Attacks on
Person Re-identification With Deep Mis-Ranking [83.48804199140758]
We propose a learning-to-mis-rank formulation to perturb the ranking of the system output.
We also perform a back-box attack by developing a novel multi-stage network architecture.
Our method can control the number of malicious pixels by using differentiable multi-shot sampling.
arXiv Detail & Related papers (2020-04-08T18:48:29Z) - Adversarial vs behavioural-based defensive AI with joint, continual and
active learning: automated evaluation of robustness to deception, poisoning
and concept drift [62.997667081978825]
Recent advancements in Artificial Intelligence (AI) have brought new capabilities to behavioural analysis (UEBA) for cyber-security.
In this paper, we present a solution to effectively mitigate this attack by improving the detection process and efficiently leveraging human expertise.
arXiv Detail & Related papers (2020-01-13T13:54:36Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.