論文の概要: Dementia Detection using Multi-modal Methods on Audio Data
- arxiv url: http://arxiv.org/abs/2501.00465v1
- Date: Tue, 31 Dec 2024 14:26:54 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-01-05 17:13:10.212538
- Title: Dementia Detection using Multi-modal Methods on Audio Data
- Title(参考訳): マルチモーダル法による音声データの認知症検出
- Authors: Saugat Kannojia, Anirudh Praveen, Danish Vasdev, Saket Nandedkar, Divyansh Mittal, Sarthak Kalankar, Shaurya Johari, Vipul Arora,
- Abstract要約: 本稿では,患者の音声記録を用いて認知症の発症を予測するために開発されたモデルについて述べる。
音声ファイルからWhisperモデルを用いて書き起こしを生成し,RoBERTa回帰モデルを用いてMMSEスコアを生成するASRベースのモデルを開発した。
RMSEスコアは2.6911で、ベースラインよりも約10%低い。
- 参考スコア(独自算出の注目度): 1.5517328698216646
- License:
- Abstract: Dementia is a neurodegenerative disease that causes gradual cognitive impairment, which is very common in the world and undergoes a lot of research every year to prevent and cure it. It severely impacts the patient's ability to remember events and communicate clearly, where most variations of it have no known cure, but early detection can help alleviate symptoms before they become worse. One of the main symptoms of dementia is difficulty in expressing ideas through speech. This paper attempts to talk about a model developed to predict the onset of the disease using audio recordings from patients. An ASR-based model was developed that generates transcripts from the audio files using Whisper model and then applies RoBERTa regression model to generate an MMSE score for the patient. This score can be used to predict the extent to which the cognitive ability of a patient has been affected. We use the PROCESS_V1 dataset for this task, which is introduced through the PROCESS Grand Challenge 2025. The model achieved an RMSE score of 2.6911 which is around 10 percent lower than the described baseline.
- Abstract(参考訳): 認知症は、徐々に認知障害を引き起こす神経変性疾患であり、世界中で非常に一般的であり、予防と治療のために毎年多くの研究が行われている。
症状が悪化する前に症状を和らげるのに役立ち、患者の記憶能力や明確なコミュニケーション能力に大きな影響を及ぼす。
認知症の主な症状の1つは、発話を通して考えを表現することの難しさである。
本稿では,患者の音声記録を用いた発症予測モデルについて述べる。
音声ファイルからWhisperモデルを用いて書き起こしを生成し,RoBERTa回帰モデルを用いてMMSEスコアを生成するASRベースのモデルを開発した。
このスコアは、患者の認知能力がどの程度影響されたかを予測するのに使用することができる。
このタスクにはProcess_V1データセットを使用し、Processage Grand Challenge 2025を通じて導入します。
RMSEスコアは2.6911で、ベースラインよりも約10%低い。
関連論文リスト
- Dementia Classification Using Acoustic Speech and Feature Selection [0.3749861135832073]
この研究は、モデル出力に基づいて特徴重要度スコアを計算するために、リッジ線形回帰、極小学習機械、線形支援ベクトル機械学習モデルを用いている。
本研究の結果は, 認知症診断において, 同じデータセットと音響的特徴抽出を用いた他の研究と比較して上位にランクされた。
論文 参考訳(メタデータ) (2025-02-04T14:50:19Z) - Alzheimer's Magnetic Resonance Imaging Classification Using Deep and Meta-Learning Models [2.4561590439700076]
本研究では,最新のCNNを特徴とする深層学習技術を活用することで,アルツハイマー病(AD)のMRIデータを分類することに焦点を当てた。
アルツハイマー病は高齢者の認知症の主要な原因であり、徐々に認知機能障害を引き起こす不可逆的な脳疾患である。
将来、この研究は、信号、画像、その他のデータを含む他の種類の医療データを組み込むように拡張することができる。
論文 参考訳(メタデータ) (2024-05-20T15:44:07Z) - A Comparative Analysis on Metaheuristic Algorithms Based Vision
Transformer Model for Early Detection of Alzheimer's Disease [0.7673339435080445]
神経変性疾患を脅かす多くの生命は、特に高齢者の生活の質を低下させた。
認知症は、早期に検出されない場合、アルツハイマー病と呼ばれる重篤な症状を引き起こす可能性がある。
本稿では, 異なる段階で認知症を特定するために, 革新的メタヒューリスティックアルゴリズムに基づくViTモデルを提案する。
論文 参考訳(メタデータ) (2024-01-18T08:31:38Z) - DDxT: Deep Generative Transformer Models for Differential Diagnosis [51.25660111437394]
より単純な教師付き学習信号と自己教師付き学習信号で訓練した生成的アプローチが,現在のベンチマークにおいて優れた結果が得られることを示す。
The proposed Transformer-based generative network, named DDxT, autoregressive produce a set of possible pathology,, i. DDx, and predicts the real pathology using a neural network。
論文 参考訳(メタデータ) (2023-12-02T22:57:25Z) - How Does Pruning Impact Long-Tailed Multi-Label Medical Image
Classifiers? [49.35105290167996]
プルーニングは、ディープニューラルネットワークを圧縮し、全体的なパフォーマンスに大きな影響を及ぼすことなく、メモリ使用量と推論時間を短縮する強力なテクニックとして登場した。
この研究は、プルーニングがモデル行動に与える影響を理解するための第一歩である。
論文 参考訳(メタデータ) (2023-08-17T20:40:30Z) - Automatic diagnosis of knee osteoarthritis severity using Swin
transformer [55.01037422579516]
変形性膝関節症 (KOA) は膝関節の慢性的な痛みと硬直を引き起こす疾患である。
我々は,Swin Transformer を用いて KOA の重大度を予測する自動手法を提案する。
論文 参考訳(メタデータ) (2023-07-10T09:49:30Z) - Leveraging Pretrained Representations with Task-related Keywords for
Alzheimer's Disease Detection [69.53626024091076]
アルツハイマー病(AD)は高齢者に特に顕著である。
事前学習モデルの最近の進歩は、AD検出モデリングを低レベル特徴から高レベル表現にシフトさせる動機付けとなっている。
本稿では,高レベルの音響・言語的特徴から,より優れたAD関連手がかりを抽出する,いくつかの効率的な手法を提案する。
論文 参考訳(メタデータ) (2023-03-14T16:03:28Z) - Acoustic-Linguistic Features for Modeling Neurological Task Score in
Alzheimer's [1.290382979353427]
自然言語処理と機械学習はアルツハイマー病を確実に検出するための有望な技術を提供する。
我々は,10種類の線形回帰モデルの性能を比較し,比較した。
与えられたタスクに対して,手作りの言語的特徴は音響的特徴や学習的特徴よりも重要であることがわかった。
論文 参考訳(メタデータ) (2022-09-13T15:35:31Z) - Remote Medication Status Prediction for Individuals with Parkinson's
Disease using Time-series Data from Smartphones [75.23250968928578]
本稿では,パーキンソン病患者のmPowerデータセットを用いて薬剤状態を予測する方法を提案する。
提案手法は,3つの薬物状態を客観的に予測する上で有望な結果を示す。
論文 参考訳(メタデータ) (2022-07-26T02:08:08Z) - Comparing Natural Language Processing Techniques for Alzheimer's
Dementia Prediction in Spontaneous Speech [1.2805268849262246]
アルツハイマー認知症(英語: Alzheimer's Dementia、AD)は、認知機能に影響を与える不治の、不安定で進行性の神経変性疾患である。
自発音声タスクによるアルツハイマー認知は、ADの分類と予測のために、音響的に前処理とバランスの取れたデータセットを提供する。
論文 参考訳(メタデータ) (2020-06-12T17:51:16Z) - Detecting Parkinsonian Tremor from IMU Data Collected In-The-Wild using
Deep Multiple-Instance Learning [59.74684475991192]
パーキンソン病(英: Parkinson's Disease、PD)は、60歳以上の人口の約1%に影響を与える徐々に進化する神経学的疾患である。
PD症状には、震動、剛性、ブレイキネジアがある。
本稿では,スマートフォン端末から受信したIMU信号に基づいて,PDに関連するトレモラスなエピソードを自動的に識別する手法を提案する。
論文 参考訳(メタデータ) (2020-05-06T09:02:30Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。