論文の概要: Innovative Silicosis and Pneumonia Classification: Leveraging Graph Transformer Post-hoc Modeling and Ensemble Techniques
- arxiv url: http://arxiv.org/abs/2501.00520v1
- Date: Tue, 31 Dec 2024 16:03:43 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-01-05 17:15:52.988368
- Title: Innovative Silicosis and Pneumonia Classification: Leveraging Graph Transformer Post-hoc Modeling and Ensemble Techniques
- Title(参考訳): Innovative Silicosis and Pneumonia Classification: Leveraging Graph Transformer Post-Hoc Modeling and Ensemble Techniques
- Authors: Bao Q. Bui, Tien T. T. Nguyen, Duy M. Le, Cong Tran, Cuong Pham,
- Abstract要約: 本研究はシリケーシス関連肺炎症の分類と検出に関する包括的研究である。
我々は, 異なる薬剤による肺炎症のニュアンスに合わせて, SVBCXと命名された新しい胸部X線画像データセットを作成した。
本稿では,従来のディープニューラルネットワークモジュールとグラフトランスフォーマーネットワークを統合した新しいディープラーニングアーキテクチャを提案する。
- 参考スコア(独自算出の注目度): 2.7612447863077794
- License:
- Abstract: This paper presents a comprehensive study on the classification and detection of Silicosis-related lung inflammation. Our main contributions include 1) the creation of a newly curated chest X-ray (CXR) image dataset named SVBCX that is tailored to the nuances of lung inflammation caused by distinct agents, providing a valuable resource for silicosis and pneumonia research community; and 2) we propose a novel deep-learning architecture that integrates graph transformer networks alongside a traditional deep neural network module for the effective classification of silicosis and pneumonia. Additionally, we employ the Balanced Cross-Entropy (BalCE) as a loss function to ensure more uniform learning across different classes, enhancing the model's ability to discern subtle differences in lung conditions. The proposed model architecture and loss function selection aim to improve the accuracy and reliability of inflammation detection, particularly in the context of Silicosis. Furthermore, our research explores the efficacy of an ensemble approach that combines the strengths of diverse model architectures. Experimental results on the constructed dataset demonstrate promising outcomes, showcasing substantial enhancements compared to baseline models. The ensemble of models achieves a macro-F1 score of 0.9749 and AUC ROC scores exceeding 0.99 for each class, underscoring the effectiveness of our approach in accurate and robust lung inflammation classification.
- Abstract(参考訳): 本研究はシリケーシス関連肺炎症の分類と検出に関する包括的研究である。
主な貢献は
1) 新しい硬化胸部X線(CXR)画像データセットSVBCXの作成は、異なる薬剤によって引き起こされる肺炎症のニュアンスに適合し、シリケーシス及び肺炎研究コミュニティに有用な資源を提供する。
2) 従来のディープニューラルネットワークモジュールとグラフトランスフォーマーネットワークを統合し,サイリケーシスと肺炎の効果的な分類を行う新しいディープラーニングアーキテクチャを提案する。
さらに,バランスド・クロス・エントロピー (BalCE) を損失関数として用い,各クラスにまたがるより均一な学習を確実にし,肺条件の微妙な差異を識別するモデルの能力を高める。
提案したモデルアーキテクチャと損失関数の選択は,炎症検出の精度と信頼性の向上を目的としている。
さらに,多様なモデルアーキテクチャの強みを組み合わせたアンサンブルアプローチの有効性について検討した。
構築したデータセットの実験結果から,有望な結果が得られ,ベースラインモデルと比較して大幅な拡張が見られた。
各クラスでマクロF1スコアが0.9749、AUC ROCスコアが0.99以上となり、正確な肺炎症分類におけるアプローチの有効性が示された。
関連論文リスト
- TopoTxR: A topology-guided deep convolutional network for breast parenchyma learning on DCE-MRIs [49.69047720285225]
そこで本研究では,乳房側葉構造をよりよく近似するために,マルチスケールのトポロジ構造を明示的に抽出する新しいトポロジカルアプローチを提案する。
VICTREファントム乳房データセットを用いてemphTopoTxRを実験的に検証した。
本研究の質的および定量的分析は,乳房組織における画像診断におけるトポロジカルな挙動を示唆するものである。
論文 参考訳(メタデータ) (2024-11-05T19:35:10Z) - Transformer-Based Self-Supervised Learning for Histopathological Classification of Ischemic Stroke Clot Origin [0.0]
虚血性脳卒中における血栓塞栓源の同定は治療と二次予防に不可欠である。
本研究は,虚血性脳梗塞の発生源を分類するためのエンボリのデジタル病理学における自己教師型深層学習アプローチについて述べる。
論文 参考訳(メタデータ) (2024-05-01T23:40:12Z) - Classification of lung cancer subtypes on CT images with synthetic
pathological priors [41.75054301525535]
同症例のCT像と病理像との間には,画像パターンに大規模な関連性が存在する。
肺がんサブタイプをCT画像上で正確に分類するための自己生成型ハイブリッド機能ネットワーク(SGHF-Net)を提案する。
論文 参考訳(メタデータ) (2023-08-09T02:04:05Z) - A Data Augmentation Method and the Embedding Mechanism for Detection and
Classification of Pulmonary Nodules on Small Samples [10.006124666261229]
新しいデータ拡張方法と埋め込み機構の2つの戦略が導入された。
肺結節検出のための拡張手法を用いた3DVNETモデルの結果,提案手法がGAN(Generative Adversarial Network)の枠組みに基づく手法よりも優れていることが示された。
論文 参考訳(メタデータ) (2023-03-02T13:58:45Z) - Accurate Detection of Paroxysmal Atrial Fibrillation with Certified-GAN
and Neural Architecture Search [1.1744028458220426]
発作性心房細動(PxAF)検出のための新しい機械学習フレームワークを提案する。
このフレームワークにはGAN(Generative Adversarial Network)とNAS(Neural Architecture Search)が含まれている。
実験の結果,提案手法の精度は99%と高い値を示した。
論文 参考訳(メタデータ) (2023-01-17T14:04:17Z) - Drug Synergistic Combinations Predictions via Large-Scale Pre-Training
and Graph Structure Learning [82.93806087715507]
薬物併用療法は、より有効で安全性の低い疾患治療のための確立された戦略である。
ディープラーニングモデルは、シナジスティックな組み合わせを発見する効率的な方法として登場した。
我々のフレームワークは、他のディープラーニングベースの手法と比較して最先端の結果を達成する。
論文 参考訳(メタデータ) (2023-01-14T15:07:43Z) - Improving Classification Model Performance on Chest X-Rays through Lung
Segmentation [63.45024974079371]
本稿では, セグメンテーションによる異常胸部X線(CXR)識別性能を向上させるための深層学習手法を提案する。
提案手法は,CXR画像中の肺領域を局所化するための深層ニューラルネットワーク(XLSor)と,大規模CXRデータセットで事前学習した自己教師あり運動量コントラスト(MoCo)モデルのバックボーンを用いたCXR分類モデルである。
論文 参考訳(メタデータ) (2022-02-22T15:24:06Z) - Study on Transfer Learning Capabilities for Pneumonia Classification in
Chest-X-Rays Image [11.076902397190961]
本研究では,トランスファーラーニングパラダイムを用いて,確立されたニューラルネットワークアーキテクチャが肺炎分類課題に及ぼす影響について検討する。
総合的な比較をするために、よく知られた12のImageNet事前訓練モデルを微調整し、健康な人の胸部X線を識別するために使用した。
実験は、合計6330枚の画像を使用して、列車、検証、テストセットに分割された。
論文 参考訳(メタデータ) (2021-10-06T14:00:18Z) - A multi-stage machine learning model on diagnosis of esophageal
manometry [50.591267188664666]
このフレームワークには、飲み込みレベルにおけるディープラーニングモデルと、学習レベルにおける機能ベースの機械学習モデルが含まれている。
これは、生のマルチスワローデータからHRM研究のCC診断を自動的に予測する最初の人工知能モデルである。
論文 参考訳(メタデータ) (2021-06-25T20:09:23Z) - Many-to-One Distribution Learning and K-Nearest Neighbor Smoothing for
Thoracic Disease Identification [83.6017225363714]
ディープラーニングは、病気の識別性能を改善するための最も強力なコンピュータ支援診断技術となった。
胸部X線撮影では、大規模データの注釈付けには専門的なドメイン知識が必要で、時間を要する。
本論文では、単一モデルにおける疾患同定性能を改善するために、複数対1の分布学習(MODL)とK-nearest neighbor smoothing(KNNS)手法を提案する。
論文 参考訳(メタデータ) (2021-02-26T02:29:30Z) - Predicting Clinical Diagnosis from Patients Electronic Health Records
Using BERT-based Neural Networks [62.9447303059342]
医療コミュニティにおけるこの問題の重要性を示す。
本稿では,変換器 (BERT) モデルによる2方向表現の分類順序の変更について述べる。
約400万人のユニークな患者訪問からなる、大規模なロシアのEHRデータセットを使用します。
論文 参考訳(メタデータ) (2020-07-15T09:22:55Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。