論文の概要: Accurate Detection of Paroxysmal Atrial Fibrillation with Certified-GAN
and Neural Architecture Search
- arxiv url: http://arxiv.org/abs/2301.10173v1
- Date: Tue, 17 Jan 2023 14:04:17 GMT
- ステータス: 処理完了
- システム内更新日: 2023-01-29 13:32:49.292108
- Title: Accurate Detection of Paroxysmal Atrial Fibrillation with Certified-GAN
and Neural Architecture Search
- Title(参考訳): Certified-GANとNeural Architecture Searchを用いた発作性心房細動の高精度検出
- Authors: Mehdi Asadi and Fatemeh Poursalim and Mohammad Loni and Masoud
Daneshtalab and Mikael Sj\"odin and Arash Gharehbaghi
- Abstract要約: 発作性心房細動(PxAF)検出のための新しい機械学習フレームワークを提案する。
このフレームワークにはGAN(Generative Adversarial Network)とNAS(Neural Architecture Search)が含まれている。
実験の結果,提案手法の精度は99%と高い値を示した。
- 参考スコア(独自算出の注目度): 1.1744028458220426
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: This paper presents a novel machine learning framework for detecting
Paroxysmal Atrial Fibrillation (PxAF), a pathological characteristic of
Electrocardiogram (ECG) that can lead to fatal conditions such as heart attack.
To enhance the learning process, the framework involves a Generative
Adversarial Network (GAN) along with a Neural Architecture Search (NAS) in the
data preparation and classifier optimization phases. The GAN is innovatively
invoked to overcome the class imbalance of the training data by producing the
synthetic ECG for PxAF class in a certified manner. The effect of the certified
GAN is statistically validated. Instead of using a general-purpose classifier,
the NAS automatically designs a highly accurate convolutional neural network
architecture customized for the PxAF classification task. Experimental results
show that the accuracy of the proposed framework exhibits a high value of 99%
which not only enhances state-of-the-art by up to 5.1%, but also improves the
classification performance of the two widely-accepted baseline methods,
ResNet-18, and Auto-Sklearn, by 2.2% and 6.1%.
- Abstract(参考訳): 本稿では,心電図(ecg)の病的特徴である発作性心房細動(pxaf)を検出するための新しい機械学習フレームワークを提案する。
学習プロセスを強化するため、データ準備と分類器最適化フェーズにおいて、GAN(Generative Adversarial Network)とNAS(Neural Architecture Search)が組み込まれている。
GANは、PxAFクラス用の合成ECGを認定方法で生成することにより、トレーニングデータのクラス不均衡を克服するために革新的に呼び出される。
認定ganの効果は統計的に検証される。
汎用分類器を使う代わりに、NASはPxAF分類タスク用にカスタマイズされた高精度な畳み込みニューラルネットワークアーキテクチャを自動設計する。
実験の結果,提案手法の精度は99%で,最大5.1%向上しただけでなく,広く認識されている2つのベースライン法であるresnet-18とauto-sklearnの分類性能を2.2%,6.1%向上させた。
関連論文リスト
- Feasibility Analysis of Federated Neural Networks for Explainable Detection of Atrial Fibrillation [1.6053176639259055]
心房細動 (AFib) の早期発見は, 無症候性, 発作性に困難である。
本研究は、生のECGデータを用いてAFibを検出するために、フェデレートラーニング(FL)プラットフォーム上でニューラルネットワークをトレーニングする可能性を評価する。
論文 参考訳(メタデータ) (2024-10-14T15:06:10Z) - Improving Machine Learning Based Sepsis Diagnosis Using Heart Rate Variability [0.0]
本研究の目的は、心拍変動(HRV)機能を用いて、敗血症検出のための効果的な予測モデルを開発することである。
ニューラルネットワークモデルは、HRVの特徴に基づいてトレーニングされ、F1スコアは0.805、精度は0.851、リコールは0.763である。
論文 参考訳(メタデータ) (2024-08-01T01:47:29Z) - EKGNet: A 10.96{\mu}W Fully Analog Neural Network for Intra-Patient
Arrhythmia Classification [79.7946379395238]
心電図不整脈分類におけるアナログ計算と深層学習を組み合わせた統合的アプローチを提案する。
本稿では,低消費電力で高精度にアーカイブするハードウェア効率と完全アナログ不整脈分類アーキテクチャであるEKGNetを提案する。
論文 参考訳(メタデータ) (2023-10-24T02:37:49Z) - Tissue Classification During Needle Insertion Using Self-Supervised
Contrastive Learning and Optical Coherence Tomography [53.38589633687604]
針先端で取得した複雑なCT信号の位相および強度データから組織を分類するディープニューラルネットワークを提案する。
トレーニングセットの10%で、提案した事前学習戦略により、モデルが0.84のF1スコアを達成するのに対して、モデルが0.60のF1スコアを得るのに対して、モデルが0.84のF1スコアを得るのに役立ちます。
論文 参考訳(メタデータ) (2023-04-26T14:11:04Z) - HARDC : A novel ECG-based heartbeat classification method to detect
arrhythmia using hierarchical attention based dual structured RNN with
dilated CNN [3.8791511769387625]
不整脈分類のための拡張CNN (HARDC) 法を用いたハイブリッド階層型双方向リカレントニューラルネットワークを開発した。
提案したHARDCは、拡張CNNと双方向リカレントニューラルネットワークユニット(BiGRU-BiLSTM)アーキテクチャをフル活用して、融合機能を生成する。
以上の結果から,複数種類の不整脈信号の分類を自動化し,高度に計算した手法が有望であることが示唆された。
論文 参考訳(メタデータ) (2023-03-06T13:26:29Z) - Global ECG Classification by Self-Operational Neural Networks with
Feature Injection [25.15075119957447]
コンパクトな1次元自己組織化オペレーショナルニューラルネットワーク(Self-ONN)を用いた患者間心電図分類のための新しいアプローチを提案する。
我々は1D Self-ONN層を用いてECGデータから形態表現を自動的に学習し、Rピーク付近のECG波形の形状を捉えることができた。
提案手法は,MIT-BIH ベンチマークデータベースを用いて,これまでで最高の分類性能を達成している。
論文 参考訳(メタデータ) (2022-04-07T22:49:18Z) - Lung Cancer Lesion Detection in Histopathology Images Using Graph-Based
Sparse PCA Network [93.22587316229954]
ヘマトキシリンとエオシン(H&E)で染色した組織学的肺スライドにおける癌病変の自動検出のためのグラフベーススパース成分分析(GS-PCA)ネットワークを提案する。
我々は,SVM K-rasG12D肺がんモデルから得られたH&Eスライダーの精度・リコール率,Fスコア,谷本係数,レシーバ演算子特性(ROC)の曲線下領域を用いて,提案アルゴリズムの性能評価を行った。
論文 参考訳(メタデータ) (2021-10-27T19:28:36Z) - Real-Time Patient-Specific ECG Classification by 1D Self-Operational
Neural Networks [24.226952040270564]
本稿では,ECG分類のための1D Self-organized Operational Neural Networks (1D Self-ONNs)を提案する。
1D Self-ONNは、演算子セットライブラリ内の前の演算子探索が完全に回避される従来のONNに比べて、最大の優位性と優位性を持つ。
MIT-BIH不整脈ベンチマークデータベースを用いた結果, 1D Self-ONN が 1D CNN をはるかに上回っていることがわかった。
論文 参考訳(メタデータ) (2021-09-30T19:37:36Z) - No Fear of Heterogeneity: Classifier Calibration for Federated Learning
with Non-IID Data [78.69828864672978]
実世界のフェデレーションシステムにおける分類モデルのトレーニングにおける中心的な課題は、非IIDデータによる学習である。
このアルゴリズムは, 近似されたssian混合モデルからサンプリングした仮想表現を用いて分類器を調整する。
実験の結果,CIFAR-10,CIFAR-100,CINIC-10など,一般的なフェデレーション学習ベンチマークにおけるCCVRの現状が示された。
論文 参考訳(メタデータ) (2021-06-09T12:02:29Z) - EEG-Inception: An Accurate and Robust End-to-End Neural Network for
EEG-based Motor Imagery Classification [123.93460670568554]
本稿では,脳波に基づく運動画像(MI)分類のための新しい畳み込みニューラルネットワーク(CNN)アーキテクチャを提案する。
提案したCNNモデル、すなわちEEG-Inceptionは、Inception-Timeネットワークのバックボーン上に構築されている。
提案するネットワークは、生のEEG信号を入力とし、複雑なEEG信号前処理を必要としないため、エンドツーエンドの分類である。
論文 参考訳(メタデータ) (2021-01-24T19:03:10Z) - ECG-DelNet: Delineation of Ambulatory Electrocardiograms with Mixed
Quality Labeling Using Neural Networks [69.25956542388653]
ディープラーニング(DL)アルゴリズムは、学術的、産業的にも重くなっている。
セグメンテーションフレームワークにECGの検出とデライン化を組み込むことにより、低解釈タスクにDLをうまく適用できることを実証する。
このモデルは、PhyloNetのQTデータベースを使用して、105個の増幅ECG記録から訓練された。
論文 参考訳(メタデータ) (2020-05-11T16:29:12Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。