論文の概要: Superposition in Transformers: A Novel Way of Building Mixture of Experts
- arxiv url: http://arxiv.org/abs/2501.00530v2
- Date: Mon, 06 Jan 2025 23:02:42 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-01-08 15:48:25.904274
- Title: Superposition in Transformers: A Novel Way of Building Mixture of Experts
- Title(参考訳): 変圧器の重ね合わせ : 専門家の混在構築の新しい方法
- Authors: Ayoub Ben Chaliah, Hela Dellagi,
- Abstract要約: 破滅的な忘れは、大きな言語モデルを新しいタスクやドメインに適用する際の大きな課題である。
ベースモデルの隠れ表現を重畳するためにオートエンコーダを利用する新しいアーキテクチャである Superposition in Transformers を導入する。
- 参考スコア(独自算出の注目度): 0.0
- License:
- Abstract: Catastrophic forgetting remains a major challenge when adapting large language models (LLMs) to new tasks or domains. Conventional fine-tuning often overwrites existing knowledge, causing performance degradation on original tasks. We introduce Superposition in Transformers, a novel architecture that leverages autoencoders to superimpose the hidden representations of a base model and a fine-tuned model within a shared parameter space. By using B-spline-based blending coefficients and autoencoders that adaptively reconstruct hidden states based on the input data distribution, our method effectively mitigates catastrophic forgetting and enables a new paradigm of "in-model" superposition. This approach preserves original model capabilities while allowing compact domain-specific expertise to be added, and it supports dynamic switching between model states during inference.
- Abstract(参考訳): 大型言語モデル(LLM)を新しいタスクやドメインに適用する場合、破滅的な忘れは依然として大きな課題である。
従来の微調整は、しばしば既存の知識を上書きし、元のタスクのパフォーマンスを低下させる。
本稿では,共有パラメータ空間内でのベースモデルと微調整モデルの隠れ表現を重畳するために,オートエンコーダを利用する新しいアーキテクチャであるSuperposition in Transformersを紹介する。
入力データ分布に基づいて隠れた状態を適応的に再構成するB-スプライン型ブレンディング係数とオートエンコーダを用いることで、破滅的忘れを効果的に軽減し、「モデル内」重ね合わせの新しいパラダイムを実現する。
このアプローチは、コンパクトなドメイン固有の専門知識を追加しながら、オリジナルのモデル機能を保持し、推論中にモデル状態の動的切替をサポートする。
関連論文リスト
- ConvMixFormer- A Resource-efficient Convolution Mixer for Transformer-based Dynamic Hand Gesture Recognition [5.311735227179715]
動的ハンドジェスチャのための新しいConvMixFormerアーキテクチャを探索し,考案する。
提案手法は,NVidia Dynamic Hand Gesture と Briareo のデータセットを用いて評価する。
我々のモデルは、単一およびマルチモーダル入力に対して最先端の結果を得た。
論文 参考訳(メタデータ) (2024-11-11T16:45:18Z) - SMILE: Zero-Shot Sparse Mixture of Low-Rank Experts Construction From Pre-Trained Foundation Models [85.67096251281191]
我々は、ゼロショットスパースミクチャー(SMILE)と呼ばれるモデル融合に対する革新的なアプローチを提案する。
SMILEは、余分なデータやさらなるトレーニングなしに、ソースモデルをMoEモデルにアップスケーリングできる。
画像分類やテキスト生成タスクなど,さまざまなシナリオに対して,フル微調整とLoRA微調整を用いて広範な実験を行う。
論文 参考訳(メタデータ) (2024-08-19T17:32:15Z) - Consolidator: Mergeable Adapter with Grouped Connections for Visual
Adaptation [53.835365470800916]
視覚変換器の知識を効率よく効果的に伝達する方法を示す。
調整可能なパラメータの小さなセットを追加して,事前学習モデルを変更するコンソリケータを提案する。
我々のコンソリエータは、0.35%のパラメータで完全な微調整よりも最大7.56の精度で到達できる。
論文 参考訳(メタデータ) (2023-04-30T23:59:02Z) - STMT: A Spatial-Temporal Mesh Transformer for MoCap-Based Action Recognition [50.064502884594376]
本研究では、モーションキャプチャー(MoCap)シーケンスを用いた人間の行動認識の問題点について検討する。
メッシュシーケンスを直接モデル化する新しい時空間メッシュ変換器(STMT)を提案する。
提案手法は,スケルトンベースモデルやポイントクラウドベースモデルと比較して,最先端の性能を実現する。
論文 参考訳(メタデータ) (2023-03-31T16:19:27Z) - Parameter-efficient Modularised Bias Mitigation via AdapterFusion [22.424110883305243]
本稿では,モデルから分離したスタンドアロンデバイアス機能を開発するための新しい手法を提案する。
DAM - まず任意のバイアス緩和機能を個別のアダプタにカプセル化し、それをオンデマンドでモデルに追加するデバイアスのアプローチを紹介します。
以上の結果から,DAMはバイアス軽減の有効性を向上・維持し,マルチ属性シナリオでの忘れを回避し,タスク性能の維持を図っている。
論文 参考訳(メタデータ) (2023-02-13T12:39:45Z) - Revision Transformers: Instructing Language Models to Change their
Values [21.645935518842744]
現在のトランスフォーマー言語モデル(LM)は数十億のパラメータを持つ大規模モデルである。
モデル更新を容易にするリビジョントランス (RiT) を提案する。
明確に構造化されたリビジョンエンジンで世界知識を拡散的に符号化する大規模な事前学習型LMの特定の組み合わせにより、モデルの知識をほとんど努力せずに更新し、ユーザーインタラクションの助けを借りることができる。
論文 参考訳(メタデータ) (2022-10-19T07:05:06Z) - Slimmable Domain Adaptation [112.19652651687402]
重み付けモデルバンクを用いて、ドメイン間の一般化を改善するためのシンプルなフレームワーク、Slimmable Domain Adaptationを導入する。
私たちのフレームワークは、他の競合するアプローチを、複数のベンチマークにおいて非常に大きなマージンで上回ります。
論文 参考訳(メタデータ) (2022-06-14T06:28:04Z) - Discrete Auto-regressive Variational Attention Models for Text Modeling [53.38382932162732]
変分オートエンコーダ(VAE)はテキストモデリングに広く応用されている。
情報不足と後部崩壊という2つの課題に悩まされている。
本稿では,自己回帰変動注意モデル(DAVAM)を提案する。
論文 参考訳(メタデータ) (2021-06-16T06:36:26Z) - Semantic Correspondence with Transformers [68.37049687360705]
本稿では,変換器を用いたコストアグリゲーション(CAT)を提案し,意味論的に類似した画像間の密接な対応を見出す。
初期相関マップと多レベルアグリゲーションを曖昧にするための外観親和性モデリングを含む。
提案手法の有効性を示す実験を行い,広範囲にわたるアブレーション研究を行った。
論文 参考訳(メタデータ) (2021-06-04T14:39:03Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。