論文の概要: Gaze Prediction as a Function of Eye Movement Type and Individual Differences
- arxiv url: http://arxiv.org/abs/2501.00597v2
- Date: Tue, 28 Jan 2025 20:40:43 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-01-30 15:51:01.037544
- Title: Gaze Prediction as a Function of Eye Movement Type and Individual Differences
- Title(参考訳): 眼球運動型と個人差の関数としての視線予測
- Authors: Kateryna Melnyk, Lee Friedman, Dmytro Katrychuk, Oleg Komogortsev,
- Abstract要約: すべてのモデルと眼球運動型に対して,主観的・主観的変化を示す。
固定ノイズは、固定時の視線予測に関連している。
ササードの場合、高い速度は視線予測性能の低下と関連している。
- 参考スコア(独自算出の注目度): 2.099922236065961
- License:
- Abstract: Eye movement prediction is a promising area of research with the potential to improve performance and the user experience of systems based on eye-tracking technology. In this study, we analyze individual differences in gaze prediction performance. We use three fundamentally different models within the analysis: the lightweight Long Short-Term Memory network (LSTM), the transformer-based network for multivariate time series representation learning (TST), and the Oculomotor Plant Mathematical Model wrapped in the Kalman Filter framework (OPKF). Each solution was assessed on different eye-movement types. We show important subject-to-subject variation for all models and eye-movement types. We found that fixation noise is associated with poorer gaze prediction in fixation. For saccades, higher velocities are associated with poorer gaze prediction performance. We think these individual differences are important and propose that future research should report statistics related to inter-subject variation. We also propose that future models should be designed to reduce subject-to-subject variation.
- Abstract(参考訳): 眼球運動予測は、視線追跡技術に基づくシステムの性能とユーザエクスペリエンスを向上させる可能性を備えた、将来的な研究分野である。
本研究では,視線予測性能の個人差を分析する。
解析には,軽量Long Short-Term Memory Network(LSTM),多変量時系列表現学習(TST)のためのTransformer-based Network,およびKalman Filter framework(OPKF)にラップされたOculomotor Plant Mathematical Modelの3つの基本モデルを用いている。
各ソリューションは異なる眼球運動タイプで評価された。
すべてのモデルと眼球運動型に対して,主観的・主観的変化を示す。
固定ノイズは、固定時の視線予測に関連していることがわかった。
ササードの場合、高い速度は視線予測性能の低下と関連している。
我々はこれらの個人差が重要であると考え、将来の研究は、対象間の変動に関する統計を報告すべきであると考えている。
また,対象物間の変動を低減するために,将来のモデルを提案する。
関連論文リスト
- The Importance of Downstream Networks in Digital Pathology Foundation Models [1.689369173057502]
162のアグリゲーションモデル構成を持つ3つの異なるデータセットにまたがる7つの特徴抽出モデルを評価する。
多くの特徴抽出器モデルの性能は顕著に類似していることが判明した。
論文 参考訳(メタデータ) (2023-11-29T16:54:25Z) - Sparse Graphical Linear Dynamical Systems [1.6635799895254402]
時系列データセットは機械学習の中心であり、科学と工学の様々な分野に応用されている。
本研究は,共同グラフィカル・モデリング・フレームワークを導入することでギャップを埋める新しい手法を提案する。
本稿では,DGLASSOを提案する。DGLASSO,DGLASSO,DGLASSO,DGLASSO,DGLASSO,DGLASSO,DGLASSO,DGLASSO,DGLASSO,DGLASSO。
論文 参考訳(メタデータ) (2023-07-06T14:10:02Z) - On the Predictive Accuracy of Neural Temporal Point Process Models for
Continuous-time Event Data [3.13468877208035]
時間的ポイントプロセス(TPP)は、非同期イベントシーケンスを連続的にモデル化するための標準的な数学的フレームワークとして機能する。
ニューラルネットワークのパラメトリゼーションを活用し、より柔軟で効率的なモデリングを提供するNeural TPPを提案する。
本研究では,最先端のニューラルTPPモデルの予測精度を系統的に評価する。
論文 参考訳(メタデータ) (2023-06-29T16:14:43Z) - Revisiting the Evaluation of Image Synthesis with GANs [55.72247435112475]
本研究では, 合成性能の評価に関する実証的研究を行い, 生成モデルの代表としてGAN(Generative Adversarial Network)を用いた。
特に、表現空間におけるデータポイントの表現方法、選択したサンプルを用いた公平距離の計算方法、各集合から使用可能なインスタンス数など、さまざまな要素の詳細な分析を行う。
論文 参考訳(メタデータ) (2023-04-04T17:54:32Z) - Temporal Relevance Analysis for Video Action Models [70.39411261685963]
まず,CNNに基づく行動モデルにより捉えたフレーム間の時間的関係を定量化する手法を提案する。
次に、時間的モデリングがどのように影響を受けるかをよりよく理解するために、包括的な実験と詳細な分析を行います。
論文 参考訳(メタデータ) (2022-04-25T19:06:48Z) - Mixed Effects Neural ODE: A Variational Approximation for Analyzing the
Dynamics of Panel Data [50.23363975709122]
パネルデータ解析に(固定・ランダムな)混合効果を取り入れたME-NODEという確率モデルを提案する。
我々は、Wong-Zakai定理によって提供されるSDEの滑らかな近似を用いて、我々のモデルを導出できることを示す。
次に、ME-NODEのためのエビデンスに基づく下界を導出し、(効率的な)トレーニングアルゴリズムを開発する。
論文 参考訳(メタデータ) (2022-02-18T22:41:51Z) - Physical model simulator-trained neural network for computational 3D
phase imaging of multiple-scattering samples [1.112751058850223]
サンプルコントラストを均質化する新しいモデルベースデータ正規化前処理法を開発した。
上皮扁平上皮細胞およびCaenorhabditis elegans wormsの実験的測定におけるこのフレームワークの能力を示す。
論文 参考訳(メタデータ) (2021-03-29T17:43:56Z) - Firearm Detection via Convolutional Neural Networks: Comparing a
Semantic Segmentation Model Against End-to-End Solutions [68.8204255655161]
武器の脅威検出とライブビデオからの攻撃的な行動は、潜在的に致命的な事故の迅速検出と予防に使用できる。
これを実現する一つの方法は、人工知能と、特に画像分析のための機械学習を使用することです。
従来のモノリシックなエンド・ツー・エンドのディープラーニングモデルと、セマンティクスセグメンテーションによって火花を検知する単純なニューラルネットワークのアンサンブルに基づく前述したモデルを比較した。
論文 参考訳(メタデータ) (2020-12-17T15:19:29Z) - Interpretable Deep Representation Learning from Temporal Multi-view Data [4.2179426073904995]
変動型オートエンコーダとリカレントニューラルネットワークに基づく生成モデルを提案し,多視点時間データに対する潜時ダイナミクスを推定する。
提案モデルを用いて,モデルの有効性と解釈可能性を示す3つのデータセットを解析する。
論文 参考訳(メタデータ) (2020-05-11T15:59:06Z) - Learning to Simulate Complex Physics with Graph Networks [68.43901833812448]
本稿では,機械学習のフレームワークとモデルの実装について紹介する。
グラフネットワーク・ベース・シミュレータ(GNS)と呼ばれる我々のフレームワークは、グラフ内のノードとして表現された粒子で物理系の状態を表現し、学習されたメッセージパスによって動的を計算します。
我々のモデルは,訓練中に数千の粒子による1段階の予測から,異なる初期条件,数千の時間ステップ,少なくとも1桁以上の粒子をテスト時に一般化できることを示す。
論文 参考訳(メタデータ) (2020-02-21T16:44:28Z) - Convolutional Tensor-Train LSTM for Spatio-temporal Learning [116.24172387469994]
本稿では,ビデオシーケンスの長期相関を効率的に学習できる高次LSTMモデルを提案する。
これは、時間をかけて畳み込み特徴を組み合わせることによって予測を行う、新しいテンソルトレインモジュールによって達成される。
この結果は,幅広いアプリケーションやデータセットにおいて,最先端のパフォーマンス向上を実現している。
論文 参考訳(メタデータ) (2020-02-21T05:00:01Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。