論文の概要: DiC: Rethinking Conv3x3 Designs in Diffusion Models
- arxiv url: http://arxiv.org/abs/2501.00603v1
- Date: Tue, 31 Dec 2024 19:00:01 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-01-05 17:15:49.157724
- Title: DiC: Rethinking Conv3x3 Designs in Diffusion Models
- Title(参考訳): DiC: 拡散モデルにおけるConv3x3設計の再考
- Authors: Yuchuan Tian, Jing Han, Chengcheng Wang, Yuchen Liang, Chao Xu, Hanting Chen,
- Abstract要約: 拡散モデルは視覚生成タスクにおいて例外的な性能を示した。
近年のモデルは、従来のU字型CNN-Attentionハイブリッド構造から、完全にトランスフォーマーベースの等方的アーキテクチャへと移行している。
3x3畳み込みを用いたスケールアップ純粋畳み込み拡散モデルを構築した。
- 参考スコア(独自算出の注目度): 19.902725825796836
- License:
- Abstract: Diffusion models have shown exceptional performance in visual generation tasks. Recently, these models have shifted from traditional U-Shaped CNN-Attention hybrid structures to fully transformer-based isotropic architectures. While these transformers exhibit strong scalability and performance, their reliance on complicated self-attention operation results in slow inference speeds. Contrary to these works, we rethink one of the simplest yet fastest module in deep learning, 3x3 Convolution, to construct a scaled-up purely convolutional diffusion model. We first discover that an Encoder-Decoder Hourglass design outperforms scalable isotropic architectures for Conv3x3, but still under-performing our expectation. Further improving the architecture, we introduce sparse skip connections to reduce redundancy and improve scalability. Based on the architecture, we introduce conditioning improvements including stage-specific embeddings, mid-block condition injection, and conditional gating. These improvements lead to our proposed Diffusion CNN (DiC), which serves as a swift yet competitive diffusion architecture baseline. Experiments on various scales and settings show that DiC surpasses existing diffusion transformers by considerable margins in terms of performance while keeping a good speed advantage. Project page: https://github.com/YuchuanTian/DiC
- Abstract(参考訳): 拡散モデルは視覚生成タスクにおいて例外的な性能を示した。
近年、これらのモデルは従来のU字型CNN-Attentionハイブリッド構造から、完全にトランスフォーマーベースの等方的アーキテクチャへと移行している。
これらの変換器は高いスケーラビリティと性能を示すが、複雑な自己注意操作に依存しているため、推論速度は遅くなる。
これらの研究とは対照的に、ディープラーニングにおける最も単純かつ高速なモジュールである3x3 Convolutionを再考して、スケールアップされた純粋な畳み込み拡散モデルを構築する。
最初に、Encoder-Decoder Hourglassの設計は、Conv3x3のスケーラブルな等方的アーキテクチャよりも優れています。
アーキテクチャをさらに改善し、冗長性を低減し、スケーラビリティを向上させるためにスパーススキップ接続を導入する。
アーキテクチャに基づいて,ステージ固有の埋め込み,ミッドブロック条件注入,条件ゲーティングなどの条件改善を導入する。
これらの改良によりDiffusion CNN (DiC) が提案され、高速かつ競争力のある拡散アーキテクチャのベースラインとして機能する。
様々なスケールと設定の実験により、DiCは性能の面で既存の拡散変圧器をかなり上回り、良好な速度の優位性を維持していることが示された。
プロジェクトページ:https://github.com/YuchuanTian/DiC
関連論文リスト
- Atleus: Accelerating Transformers on the Edge Enabled by 3D Heterogeneous Manycore Architectures [18.355570259898]
Atleusと呼ばれる3次元ヘテロジニアスアーキテクチャの設計を提案する。
Atleusには、トランスフォーマーモデルを加速するために特別に最適化された異種コンピューティングリソースが組み込まれている。
Atleusは, 性能およびエネルギー効率の点で, 既存の最先端技術よりも56倍, 64.5倍高い性能を示した。
論文 参考訳(メタデータ) (2025-01-16T15:11:33Z) - TinyFusion: Diffusion Transformers Learned Shallow [52.96232442322824]
拡散変換器は画像生成において顕著な機能を示すが、しばしば過度なパラメータ化を伴う。
本稿では,拡散変圧器の冗長層をエンド・ツー・エンド・ラーニングにより除去する深度切削法TinyFusionを提案する。
DiT-XLの実験では、TinyFusionはトレーニング前のコストの7%以下で浅い拡散変圧器を製造でき、FIDスコアが2.86で2$times$のスピードアップを達成した。
論文 参考訳(メタデータ) (2024-12-02T07:05:39Z) - Kolmogorov-Arnold Transformer [72.88137795439407]
Kolmogorov-Arnold Transformer(KAT)は,階層をKAN(Kolmogorov-Arnold Network)層に置き換える新しいアーキテクチャである。
C1)基本関数,(C2)非効率,(C3)重みの3つの主要な課題を特定する。
これらの設計により、KATは従来のトランスフォーマーよりも優れている。
論文 参考訳(メタデータ) (2024-09-16T17:54:51Z) - ToddlerDiffusion: Interactive Structured Image Generation with Cascaded Schrödinger Bridge [63.00793292863]
ToddlerDiffusionは、RGB画像生成の複雑なタスクを、よりシンプルで解釈可能なステージに分解するための新しいアプローチである。
提案手法はToddler Diffusionと呼ばれ,それぞれが中間表現を生成する責務を担っている。
ToddlerDiffusionは、常に最先端のメソッドより優れています。
論文 参考訳(メタデータ) (2023-11-24T15:20:01Z) - FastViT: A Fast Hybrid Vision Transformer using Structural
Reparameterization [14.707312504365376]
我々は、最先端のレイテンシ-精度トレードオフを得るハイブリッドビジョントランスフォーマーアーキテクチャであるFastViTを紹介する。
我々は,当社のモデルがCMTの3.5倍,EfficientNetの4.9倍,モバイルデバイスのConvNeXtの1.9倍で,ImageNetデータセットと同じ精度であることを示す。
論文 参考訳(メタデータ) (2023-03-24T17:58:32Z) - Efficient Neural Net Approaches in Metal Casting Defect Detection [0.0]
本研究は,精度と推定時間の観点から効率の良い軽量アーキテクチャを提案する。
以上の結果から,深度的に分離可能な畳み込みを持つ590Kパラメータのカスタムモデルが事前学習アーキテクチャよりも優れていたことが示唆された。
論文 参考訳(メタデータ) (2022-08-08T13:54:36Z) - Squeezeformer: An Efficient Transformer for Automatic Speech Recognition [99.349598600887]
Conformerは、そのハイブリッドアテンション・コンボリューションアーキテクチャに基づいて、様々な下流音声タスクの事実上のバックボーンモデルである。
Squeezeformerモデルを提案する。これは、同じトレーニングスキームの下で、最先端のASRモデルよりも一貫して優れている。
論文 参考訳(メタデータ) (2022-06-02T06:06:29Z) - SideRT: A Real-time Pure Transformer Architecture for Single Image Depth
Estimation [11.513054537848227]
そこで我々は,SideRTと呼ばれる純粋なトランスフォーマーアーキテクチャを提案する。
これは、トランスフォーマーベースのネットワークが、単一画像深度推定フィールドにおいて、リアルタイムに最先端の性能が得られることを示す最初の研究である。
論文 参考訳(メタデータ) (2022-04-29T05:46:20Z) - TCCT: Tightly-Coupled Convolutional Transformer on Time Series
Forecasting [6.393659160890665]
本稿では, 密結合型畳み込み変換器(TCCT)と3つのTCCTアーキテクチャを提案する。
実世界のデータセットに対する我々の実験は、我々のTCCTアーキテクチャが既存の最先端トランスフォーマーモデルの性能を大幅に改善できることを示している。
論文 参考訳(メタデータ) (2021-08-29T08:49:31Z) - RT3D: Achieving Real-Time Execution of 3D Convolutional Neural Networks
on Mobile Devices [57.877112704841366]
本稿では3次元CNNのためのモデル圧縮およびモバイルアクセラレーションフレームワークRT3Dを提案する。
3D CNNのリアルタイム実行は、市販のモバイル上で初めて実現された。
論文 参考訳(メタデータ) (2020-07-20T02:05:32Z) - A Real-time Action Representation with Temporal Encoding and Deep
Compression [115.3739774920845]
動作表現のための時間畳み込み3Dネットワーク(T-C3D)と呼ばれる新しいリアルタイム畳み込みアーキテクチャを提案する。
T-C3Dは、高プロセス速度を得ながら、階層的な多粒度でビデオアクション表現を学習する。
提案手法は,5MB未満のストレージモデルを用いて,提案手法の精度5.4%,推論速度2倍の高速化を実現した。
論文 参考訳(メタデータ) (2020-06-17T06:30:43Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。