Enabling New HDLs with Agents
- URL: http://arxiv.org/abs/2501.00642v1
- Date: Tue, 31 Dec 2024 20:37:20 GMT
- Title: Enabling New HDLs with Agents
- Authors: Mark Zakharov, Farzaneh Rabiei Kashanaki, Jose Renau,
- Abstract summary: Large Language Models (LLMs) based agents are transforming the programming language landscape.
This paper investigates the challenges and solutions of enabling LLMs for Hardware Description Languages (HDLs)
It introduces HDLAgent, an AI agent optimized for LLMs with limited knowledge of various HDLs.
- Score: 0.24578723416255746
- License:
- Abstract: Large Language Models (LLMs) based agents are transforming the programming language landscape by facilitating learning for beginners, enabling code generation, and optimizing documentation workflows. Hardware Description Languages (HDLs), with their smaller user community, stand to benefit significantly from the application of LLMs as tools for learning new HDLs. This paper investigates the challenges and solutions of enabling LLMs for HDLs, particularly for HDLs that LLMs have not been previously trained on. This work introduces HDLAgent, an AI agent optimized for LLMs with limited knowledge of various HDLs. It significantly enhances off-the-shelf LLMs.
Related papers
- Exploring Code Language Models for Automated HLS-based Hardware Generation: Benchmark, Infrastructure and Analysis [49.998130983414924]
Large language models (LLMs) can be employed for programming languages such as Python and C++.
This paper explores leveraging LLMs to generate High-Level Synthesis (HLS)-based hardware design.
arXiv Detail & Related papers (2025-02-19T17:53:59Z) - Improving the Ability of Pre-trained Language Model by Imparting Large Language Model's Experience [4.814313782484443]
Large Language Models (LLMs) and pre-trained Language Models (LMs) have achieved impressive success on many software engineering tasks.
We use LLMs to generate domain-specific data, thereby improving the performance of pre-trained LMs on the target tasks.
arXiv Detail & Related papers (2024-08-16T06:37:59Z) - Classification-Based Automatic HDL Code Generation Using LLMs [9.630310313347657]
Large language models (LLMs) have demonstrated the ability to generate hardware description language (HDL) code for digital circuits.
LLMs suffer from the hallucination problem, which leads to the generation of incorrect HDL code or misunderstanding of specifications.
We introduce a human-expert-inspired method to mitigate the hallucination of LLMs and improve the performance in HDL code generation.
arXiv Detail & Related papers (2024-07-04T09:00:13Z) - EnvGen: Generating and Adapting Environments via LLMs for Training Embodied Agents [65.38474102119181]
We propose EnvGen, a framework to adaptively create training environments.
We train a small RL agent in a mixture of the original and LLM-generated environments.
We find that a small RL agent trained with EnvGen can outperform SOTA methods, including a GPT-4 agent, and learns long-horizon tasks significantly faster.
arXiv Detail & Related papers (2024-03-18T17:51:16Z) - HDLdebugger: Streamlining HDL debugging with Large Language Models [20.09481664579469]
In the domain of chip design, Hardware Description Languages (HDLs) play a pivotal role.
Despite the strong capabilities of Large Language Models (LLMs) in generating, completing, and inspecting software code, their utilization in the specialized field of HDL debug has been limited.
We propose a framework, namely HDLger, which consists of HDL data generation via a reverse engineering approach, a search engine for retrieval-augmented generation, and a retrieval-augmented LLM fine-tuning approach.
Our experiments, conducted on an HDL code dataset sourced from Huawei, reveal that HDLger outperforms 13 cutting
arXiv Detail & Related papers (2024-03-18T11:19:37Z) - Knowledge Fusion of Large Language Models [73.28202188100646]
This paper introduces the notion of knowledge fusion for large language models (LLMs)
We externalize their collective knowledge and unique strengths, thereby elevating the capabilities of the target model beyond those of any individual source LLM.
Our findings confirm that the fusion of LLMs can improve the performance of the target model across a range of capabilities such as reasoning, commonsense, and code generation.
arXiv Detail & Related papers (2024-01-19T05:02:46Z) - If LLM Is the Wizard, Then Code Is the Wand: A Survey on How Code
Empowers Large Language Models to Serve as Intelligent Agents [81.60906807941188]
Large language models (LLMs) are trained on a combination of natural language and formal language (code)
Code translates high-level goals into executable steps, featuring standard syntax, logical consistency, abstraction, and modularity.
arXiv Detail & Related papers (2024-01-01T16:51:20Z) - Supervised Knowledge Makes Large Language Models Better In-context Learners [94.89301696512776]
Large Language Models (LLMs) exhibit emerging in-context learning abilities through prompt engineering.
The challenge of improving the generalizability and factuality of LLMs in natural language understanding and question answering remains under-explored.
We propose a framework that enhances the reliability of LLMs as it: 1) generalizes out-of-distribution data, 2) elucidates how LLMs benefit from discriminative models, and 3) minimizes hallucinations in generative tasks.
arXiv Detail & Related papers (2023-12-26T07:24:46Z) - A Survey of Large Language Models for Code: Evolution, Benchmarking, and
Future Trends [30.774685501251817]
General large language models (LLMs) have demonstrated significant potential in tasks such as code generation in software engineering.
A considerable portion of Code LLMs is derived from general LLMs through model fine-tuning.
There is currently a lack of systematic investigation into Code LLMs and their performance.
arXiv Detail & Related papers (2023-11-17T07:55:16Z) - LLM-Pruner: On the Structural Pruning of Large Language Models [65.02607075556742]
Large language models (LLMs) have shown remarkable capabilities in language understanding and generation.
We tackle the compression of LLMs within the bound of two constraints: being task-agnostic and minimizing the reliance on the original training dataset.
Our method, named LLM-Pruner, adopts structural pruning that selectively removes non-critical coupled structures.
arXiv Detail & Related papers (2023-05-19T12:10:53Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.