Automatic Construction of Pattern Classifiers Capable of Continuous Incremental Learning and Unlearning Tasks Based on Compact-Sized Probabilistic Neural Network
- URL: http://arxiv.org/abs/2501.00725v1
- Date: Wed, 01 Jan 2025 05:02:53 GMT
- Title: Automatic Construction of Pattern Classifiers Capable of Continuous Incremental Learning and Unlearning Tasks Based on Compact-Sized Probabilistic Neural Network
- Authors: Tetsuya Hoya, Shunpei Morita,
- Abstract summary: This paper proposes a novel approach to pattern classification using a probabilistic neural network model.
The strategy is based on a compact-sized probabilistic neural network capable of continuous incremental learning and unlearning tasks.
- Score: 0.0
- License:
- Abstract: This paper proposes a novel approach to pattern classification using a probabilistic neural network model. The strategy is based on a compact-sized probabilistic neural network capable of continuous incremental learning and unlearning tasks. The network is constructed/reconstructed using a simple, one-pass network-growing algorithm with no hyperparameter tuning. Then, given the training dataset, its structure and parameters are automatically determined and can be dynamically varied in continual incremental and decremental learning situations. The algorithm proposed in this work involves no iterative or arduous matrix-based parameter approximations but a simple data-driven updating scheme. Simulation results using nine publicly available databases demonstrate the effectiveness of this approach, showing that compact-sized probabilistic neural networks constructed have a much smaller number of hidden units compared to the original probabilistic neural network model and yet can achieve a similar classification performance to that of multilayer perceptron neural networks in standard classification tasks, while also exhibiting sufficient capability in continuous class incremental learning and unlearning tasks.
Related papers
- NEAR: A Training-Free Pre-Estimator of Machine Learning Model Performance [0.0]
We propose a zero-cost proxy textitNetwork Expressivity by Activation Rank (NEAR) to identify the optimal network without training.
We demonstrate the cutting-edge correlation between this network score and the model accuracy on NAS-Bench-101 and NATS-Bench-SSS/TSS.
arXiv Detail & Related papers (2024-08-16T14:38:14Z) - Coding schemes in neural networks learning classification tasks [52.22978725954347]
We investigate fully-connected, wide neural networks learning classification tasks.
We show that the networks acquire strong, data-dependent features.
Surprisingly, the nature of the internal representations depends crucially on the neuronal nonlinearity.
arXiv Detail & Related papers (2024-06-24T14:50:05Z) - Graph Neural Networks for Learning Equivariant Representations of Neural Networks [55.04145324152541]
We propose to represent neural networks as computational graphs of parameters.
Our approach enables a single model to encode neural computational graphs with diverse architectures.
We showcase the effectiveness of our method on a wide range of tasks, including classification and editing of implicit neural representations.
arXiv Detail & Related papers (2024-03-18T18:01:01Z) - Neural Network Pruning by Gradient Descent [7.427858344638741]
We introduce a novel and straightforward neural network pruning framework that incorporates the Gumbel-Softmax technique.
We demonstrate its exceptional compression capability, maintaining high accuracy on the MNIST dataset with only 0.15% of the original network parameters.
We believe our method opens a promising new avenue for deep learning pruning and the creation of interpretable machine learning systems.
arXiv Detail & Related papers (2023-11-21T11:12:03Z) - How neural networks learn to classify chaotic time series [77.34726150561087]
We study the inner workings of neural networks trained to classify regular-versus-chaotic time series.
We find that the relation between input periodicity and activation periodicity is key for the performance of LKCNN models.
arXiv Detail & Related papers (2023-06-04T08:53:27Z) - Learning to Learn with Generative Models of Neural Network Checkpoints [71.06722933442956]
We construct a dataset of neural network checkpoints and train a generative model on the parameters.
We find that our approach successfully generates parameters for a wide range of loss prompts.
We apply our method to different neural network architectures and tasks in supervised and reinforcement learning.
arXiv Detail & Related papers (2022-09-26T17:59:58Z) - Sparse Interaction Additive Networks via Feature Interaction Detection
and Sparse Selection [10.191597755296163]
We develop a tractable selection algorithm to efficiently identify the necessary feature combinations.
Our proposed Sparse Interaction Additive Networks (SIAN) construct a bridge from simple and interpretable models to fully connected neural networks.
arXiv Detail & Related papers (2022-09-19T19:57:17Z) - Data-driven emergence of convolutional structure in neural networks [83.4920717252233]
We show how fully-connected neural networks solving a discrimination task can learn a convolutional structure directly from their inputs.
By carefully designing data models, we show that the emergence of this pattern is triggered by the non-Gaussian, higher-order local structure of the inputs.
arXiv Detail & Related papers (2022-02-01T17:11:13Z) - Dynamic Analysis of Nonlinear Civil Engineering Structures using
Artificial Neural Network with Adaptive Training [2.1202971527014287]
In this study, artificial neural networks are developed with adaptive training algorithms.
The networks can successfully predict the time-history response of the shear frame and the rock structure to real ground motion records.
arXiv Detail & Related papers (2021-11-21T21:14:48Z) - PAC-Bayesian Learning of Aggregated Binary Activated Neural Networks
with Probabilities over Representations [2.047424180164312]
We study the expectation of a probabilistic neural network as a predictor by itself, focusing on the aggregation of binary activated neural networks with normal distributions over real-valued weights.
We show that the exact computation remains tractable for deep but narrow neural networks, thanks to a dynamic programming approach.
arXiv Detail & Related papers (2021-10-28T14:11:07Z) - Mitigating Performance Saturation in Neural Marked Point Processes:
Architectures and Loss Functions [50.674773358075015]
We propose a simple graph-based network structure called GCHP, which utilizes only graph convolutional layers.
We show that GCHP can significantly reduce training time and the likelihood ratio loss with interarrival time probability assumptions can greatly improve the model performance.
arXiv Detail & Related papers (2021-07-07T16:59:14Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.