Enhancing Unsupervised Feature Selection via Double Sparsity Constrained Optimization
- URL: http://arxiv.org/abs/2501.00726v1
- Date: Wed, 01 Jan 2025 05:05:46 GMT
- Title: Enhancing Unsupervised Feature Selection via Double Sparsity Constrained Optimization
- Authors: Xianchao Xiu, Anning Yang, Chenyi Huang, Xinrong Li, Wanquan Liu,
- Abstract summary: Unsupervised single feature selection (UFS) is widely applied in machine learning and pattern recognition.
Most of the existing methods only consider sparsity, which makes it difficult to select subsets and discriminative from the original.
In this paper, we propose a new method called DSCOFS to consider a subset and discriminative from the original.
- Score: 6.342485512772862
- License:
- Abstract: Unsupervised feature selection (UFS) is widely applied in machine learning and pattern recognition. However, most of the existing methods only consider a single sparsity, which makes it difficult to select valuable and discriminative feature subsets from the original high-dimensional feature set. In this paper, we propose a new UFS method called DSCOFS via embedding double sparsity constrained optimization into the classical principal component analysis (PCA) framework. Double sparsity refers to using $\ell_{2,0}$-norm and $\ell_0$-norm to simultaneously constrain variables, by adding the sparsity of different types, to achieve the purpose of improving the accuracy of identifying differential features. The core is that $\ell_{2,0}$-norm can remove irrelevant and redundant features, while $\ell_0$-norm can filter out irregular noisy features, thereby complementing $\ell_{2,0}$-norm to improve discrimination. An effective proximal alternating minimization method is proposed to solve the resulting nonconvex nonsmooth model. Theoretically, we rigorously prove that the sequence generated by our method globally converges to a stationary point. Numerical experiments on three synthetic datasets and eight real-world datasets demonstrate the effectiveness, stability, and convergence of the proposed method. In particular, the average clustering accuracy (ACC) and normalized mutual information (NMI) are improved by at least 3.34% and 3.02%, respectively, compared with the state-of-the-art methods. More importantly, two common statistical tests and a new feature similarity metric verify the advantages of double sparsity. All results suggest that our proposed DSCOFS provides a new perspective for feature selection.
Related papers
- Smoothed Normalization for Efficient Distributed Private Optimization [54.197255548244705]
Federated learning enables machine learning models with privacy of participants.
There is no differentially private distributed method for training, non-feedback problems.
We introduce a new distributed algorithm $alpha$-$sf NormEC$ with provable convergence guarantees.
arXiv Detail & Related papers (2025-02-19T07:10:32Z) - Bi-Sparse Unsupervised Feature Selection [9.541908550559361]
Unsupervised feature selection (UFS) has become a rising technique for image processing.
In this paper, we introduce a novel bi-sparse UFS method, called BSUFS, to simultaneously satisfy both global and local structures.
Extensive numerical experiments on synthetic and real-world datasets demonstrate the effectiveness of our proposed BSUFS.
arXiv Detail & Related papers (2024-12-22T01:43:58Z) - ALoRE: Efficient Visual Adaptation via Aggregating Low Rank Experts [71.91042186338163]
ALoRE is a novel PETL method that reuses the hypercomplex parameterized space constructed by Kronecker product to Aggregate Low Rank Experts.
Thanks to the artful design, ALoRE maintains negligible extra parameters and can be effortlessly merged into the frozen backbone.
arXiv Detail & Related papers (2024-12-11T12:31:30Z) - Decoding-Time Language Model Alignment with Multiple Objectives [116.42095026960598]
Existing methods primarily focus on optimizing LMs for a single reward function, limiting their adaptability to varied objectives.
Here, we propose $textbfmulti-objective decoding (MOD)$, a decoding-time algorithm that outputs the next token from a linear combination of predictions.
We show why existing approaches can be sub-optimal even in natural settings and obtain optimality guarantees for our method.
arXiv Detail & Related papers (2024-06-27T02:46:30Z) - Adaptive Variance Reduction for Stochastic Optimization under Weaker Assumptions [26.543628010637036]
We introduce a novel adaptive reduction method that achieves an optimal convergence rate of $mathcalO(log T)$ for non- functions.
We also extend the proposed technique to obtain the same optimal rate of $mathcalO(log T)$ for compositional optimization.
arXiv Detail & Related papers (2024-06-04T04:39:51Z) - DiTMoS: Delving into Diverse Tiny-Model Selection on Microcontrollers [34.282971510732736]
We introduce DiTMoS, a novel DNN training and inference framework with a selector-classifiers architecture.
A composition of weak models can exhibit high diversity and the union of them can significantly boost the accuracy upper bound.
We deploy DiTMoS on the Neucleo STM32F767ZI board and evaluate it based on three time-series datasets for human activity recognition, keywords spotting, and emotion recognition.
arXiv Detail & Related papers (2024-03-14T02:11:38Z) - Class-Imbalanced Semi-Supervised Learning for Large-Scale Point Cloud
Semantic Segmentation via Decoupling Optimization [64.36097398869774]
Semi-supervised learning (SSL) has been an active research topic for large-scale 3D scene understanding.
The existing SSL-based methods suffer from severe training bias due to class imbalance and long-tail distributions of the point cloud data.
We introduce a new decoupling optimization framework, which disentangles feature representation learning and classifier in an alternative optimization manner to shift the bias decision boundary effectively.
arXiv Detail & Related papers (2024-01-13T04:16:40Z) - Efficiently Escaping Saddle Points for Non-Convex Policy Optimization [40.0986936439803]
Policy gradient (PG) is widely used in reinforcement learning due to its scalability and good performance.
We propose a variance-reduced second-order method that uses second-order information in the form of Hessian vector products (HVP) and converges to an approximate second-order stationary point (SOSP) with sample complexity of $tildeO(epsilon-3)$.
arXiv Detail & Related papers (2023-11-15T12:36:45Z) - AdaGDA: Faster Adaptive Gradient Descent Ascent Methods for Minimax
Optimization [104.96004056928474]
We propose a class of faster adaptive gradient descent methods for non-strongly-concave minimax problems.
We show that our method reaches a lower sample complexity of $O(kappa2.5epsilon-3)$ with the mini-batch size $O(kappa)$.
arXiv Detail & Related papers (2021-06-30T14:47:09Z) - Robust Multi-class Feature Selection via $l_{2,0}$-Norm Regularization
Minimization [6.41804410246642]
Feature selection is an important computational-processing in data mining and machine learning.
In this paper, a novel method based on homoy hard threshold (HIHT) is proposed to solve the least square problem for multi-class feature selection.
arXiv Detail & Related papers (2020-10-08T02:06:06Z) - Multi-Objective Matrix Normalization for Fine-grained Visual Recognition [153.49014114484424]
Bilinear pooling achieves great success in fine-grained visual recognition (FGVC)
Recent methods have shown that the matrix power normalization can stabilize the second-order information in bilinear features.
We propose an efficient Multi-Objective Matrix Normalization (MOMN) method that can simultaneously normalize a bilinear representation.
arXiv Detail & Related papers (2020-03-30T08:40:35Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.