Dynamics of Adversarial Attacks on Large Language Model-Based Search Engines
- URL: http://arxiv.org/abs/2501.00745v1
- Date: Wed, 01 Jan 2025 06:23:26 GMT
- Title: Dynamics of Adversarial Attacks on Large Language Model-Based Search Engines
- Authors: Xiyang Hu,
- Abstract summary: We study the dynamics of ranking manipulation attacks in search engines.
We identify tipping points in the system dynamics, demonstrating that cooperation is more likely to be sustained when players are forward-looking.
Our work provides a theoretical foundation and practical insights for understanding and mitigating their vulnerabilities.
- Score: 7.260315265550391
- License:
- Abstract: The increasing integration of Large Language Model (LLM) based search engines has transformed the landscape of information retrieval. However, these systems are vulnerable to adversarial attacks, especially ranking manipulation attacks, where attackers craft webpage content to manipulate the LLM's ranking and promote specific content, gaining an unfair advantage over competitors. In this paper, we study the dynamics of ranking manipulation attacks. We frame this problem as an Infinitely Repeated Prisoners' Dilemma, where multiple players strategically decide whether to cooperate or attack. We analyze the conditions under which cooperation can be sustained, identifying key factors such as attack costs, discount rates, attack success rates, and trigger strategies that influence player behavior. We identify tipping points in the system dynamics, demonstrating that cooperation is more likely to be sustained when players are forward-looking. However, from a defense perspective, we find that simply reducing attack success probabilities can, paradoxically, incentivize attacks under certain conditions. Furthermore, defensive measures to cap the upper bound of attack success rates may prove futile in some scenarios. These insights highlight the complexity of securing LLM-based systems. Our work provides a theoretical foundation and practical insights for understanding and mitigating their vulnerabilities, while emphasizing the importance of adaptive security strategies and thoughtful ecosystem design.
Related papers
- Non-Cooperative Backdoor Attacks in Federated Learning: A New Threat Landscape [7.00762739959285]
Federated Learning (FL) for privacy-preserving model training remains susceptible to backdoor attacks.
This research emphasizes the critical need for robust defenses against diverse backdoor attacks in the evolving FL landscape.
arXiv Detail & Related papers (2024-07-05T22:03:13Z) - A Novel Approach to Guard from Adversarial Attacks using Stable Diffusion [0.0]
Our proposal suggests a different approach to the AI Guardian framework.
Instead of including adversarial examples in the training process, we propose training the AI system without them.
This aims to create a system that is inherently resilient to a wider range of attacks.
arXiv Detail & Related papers (2024-05-03T04:08:15Z) - Mutual-modality Adversarial Attack with Semantic Perturbation [81.66172089175346]
We propose a novel approach that generates adversarial attacks in a mutual-modality optimization scheme.
Our approach outperforms state-of-the-art attack methods and can be readily deployed as a plug-and-play solution.
arXiv Detail & Related papers (2023-12-20T05:06:01Z) - On the Difficulty of Defending Contrastive Learning against Backdoor
Attacks [58.824074124014224]
We show how contrastive backdoor attacks operate through distinctive mechanisms.
Our findings highlight the need for defenses tailored to the specificities of contrastive backdoor attacks.
arXiv Detail & Related papers (2023-12-14T15:54:52Z) - BadCLIP: Dual-Embedding Guided Backdoor Attack on Multimodal Contrastive
Learning [85.2564206440109]
This paper reveals the threats in this practical scenario that backdoor attacks can remain effective even after defenses.
We introduce the emphtoolns attack, which is resistant to backdoor detection and model fine-tuning defenses.
arXiv Detail & Related papers (2023-11-20T02:21:49Z) - Ares: A System-Oriented Wargame Framework for Adversarial ML [3.197282271064602]
Ares is an evaluation framework for adversarial ML that allows researchers to explore attacks and defenses in a realistic wargame-like environment.
Ares frames the conflict between the attacker and defender as two agents in a reinforcement learning environment with opposing objectives.
This allows the introduction of system-level evaluation metrics such as time to failure and evaluation of complex strategies.
arXiv Detail & Related papers (2022-10-24T04:55:18Z) - A Tale of HodgeRank and Spectral Method: Target Attack Against Rank
Aggregation Is the Fixed Point of Adversarial Game [153.74942025516853]
The intrinsic vulnerability of the rank aggregation methods is not well studied in the literature.
In this paper, we focus on the purposeful adversary who desires to designate the aggregated results by modifying the pairwise data.
The effectiveness of the suggested target attack strategies is demonstrated by a series of toy simulations and several real-world data experiments.
arXiv Detail & Related papers (2022-09-13T05:59:02Z) - Fixed Points in Cyber Space: Rethinking Optimal Evasion Attacks in the
Age of AI-NIDS [70.60975663021952]
We study blackbox adversarial attacks on network classifiers.
We argue that attacker-defender fixed points are themselves general-sum games with complex phase transitions.
We show that a continual learning approach is required to study attacker-defender dynamics.
arXiv Detail & Related papers (2021-11-23T23:42:16Z) - Adversarial Attack and Defense in Deep Ranking [100.17641539999055]
We propose two attacks against deep ranking systems that can raise or lower the rank of chosen candidates by adversarial perturbations.
Conversely, an anti-collapse triplet defense is proposed to improve the ranking model robustness against all proposed attacks.
Our adversarial ranking attacks and defenses are evaluated on MNIST, Fashion-MNIST, CUB200-2011, CARS196 and Stanford Online Products datasets.
arXiv Detail & Related papers (2021-06-07T13:41:45Z) - Adversarial Attack Attribution: Discovering Attributable Signals in
Adversarial ML Attacks [0.7883722807601676]
Even production systems, such as self-driving cars and ML-as-a-service offerings, are susceptible to adversarial inputs.
Can perturbed inputs be attributed to the methods used to generate the attack?
We introduce the concept of adversarial attack attribution and create a simple supervised learning experimental framework to examine the feasibility of discovering attributable signals in adversarial attacks.
arXiv Detail & Related papers (2021-01-08T08:16:41Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.