Ensuring superior learning outcomes and data security for authorized learner
- URL: http://arxiv.org/abs/2501.00754v1
- Date: Wed, 01 Jan 2025 06:49:00 GMT
- Title: Ensuring superior learning outcomes and data security for authorized learner
- Authors: Jeongho Bang, Wooyeong Song, Kyujin Shin, Yong-Su Kim,
- Abstract summary: A learner's ability to generate a hypothesis that closely approximates the target function is crucial in machine learning.
It is important to ensure the performance of the "authorized" learner by limiting the quality of the training data accessible to eavesdroppers.
We provide a theorem to ensure superior learning outcomes exclusively for the authorized learner with quantum label encoding.
- Score: 0.4166512373146748
- License:
- Abstract: The learner's ability to generate a hypothesis that closely approximates the target function is crucial in machine learning. Achieving this requires sufficient data; however, unauthorized access by an eavesdropping learner can lead to security risks. Thus, it is important to ensure the performance of the "authorized" learner by limiting the quality of the training data accessible to eavesdroppers. Unlike previous studies focusing on encryption or access controls, we provide a theorem to ensure superior learning outcomes exclusively for the authorized learner with quantum label encoding. In this context, we use the probably-approximately-correct (PAC) learning framework and introduce the concept of learning probability to quantitatively assess learner performance. Our theorem allows the condition that, given a training dataset, an authorized learner is guaranteed to achieve a certain quality of learning outcome, while eavesdroppers are not. Notably, this condition can be constructed based only on the authorized-learning-only measurable quantities of the training data, i.e., its size and noise degree. We validate our theoretical proofs and predictions through convolutional neural networks (CNNs) image classification learning.
Related papers
- Mind the Interference: Retaining Pre-trained Knowledge in Parameter Efficient Continual Learning of Vision-Language Models [79.28821338925947]
Domain-Class Incremental Learning is a realistic but challenging continual learning scenario.
To handle these diverse tasks, pre-trained Vision-Language Models (VLMs) are introduced for their strong generalizability.
This incurs a new problem: the knowledge encoded in the pre-trained VLMs may be disturbed when adapting to new tasks, compromising their inherent zero-shot ability.
Existing methods tackle it by tuning VLMs with knowledge distillation on extra datasets, which demands heavy overhead.
We propose the Distribution-aware Interference-free Knowledge Integration (DIKI) framework, retaining pre-trained knowledge of
arXiv Detail & Related papers (2024-07-07T12:19:37Z) - Silver Linings in the Shadows: Harnessing Membership Inference for Machine Unlearning [7.557226714828334]
We present a novel unlearning mechanism designed to remove the impact of specific data samples from a neural network.
In achieving this goal, we crafted a novel loss function tailored to eliminate privacy-sensitive information from weights and activation values of the target model.
Our results showcase the superior performance of our approach in terms of unlearning efficacy and latency as well as the fidelity of the primary task.
arXiv Detail & Related papers (2024-07-01T00:20:26Z) - What Makes CLIP More Robust to Long-Tailed Pre-Training Data? A Controlled Study for Transferable Insights [67.72413262980272]
Severe data imbalance naturally exists among web-scale vision-language datasets.
We find CLIP pre-trained thereupon exhibits notable robustness to the data imbalance compared to supervised learning.
The robustness and discriminability of CLIP improve with more descriptive language supervision, larger data scale, and broader open-world concepts.
arXiv Detail & Related papers (2024-05-31T17:57:24Z) - Ticketed Learning-Unlearning Schemes [57.89421552780526]
We propose a new ticketed model for learning--unlearning.
We provide space-efficient ticketed learning--unlearning schemes for a broad family of concept classes.
arXiv Detail & Related papers (2023-06-27T18:54:40Z) - Pre-trained Encoders in Self-Supervised Learning Improve Secure and
Privacy-preserving Supervised Learning [63.45532264721498]
Self-supervised learning is an emerging technique to pre-train encoders using unlabeled data.
We perform first systematic, principled measurement study to understand whether and when a pretrained encoder can address the limitations of secure or privacy-preserving supervised learning algorithms.
arXiv Detail & Related papers (2022-12-06T21:35:35Z) - Progress in Self-Certified Neural Networks [13.434562713466246]
A learning method is self-certified if it uses all available data to simultaneously learn a predictor and certify its quality.
Recent work has shown that neural network models trained by optimising PAC-Bayes bounds lead to accurate predictors.
We show that in data starvation regimes, holding out data for the test set bounds adversely affects generalisation performance.
arXiv Detail & Related papers (2021-11-15T13:39:44Z) - Knowledge-driven Active Learning [70.37119719069499]
Active learning strategies aim at minimizing the amount of labelled data required to train a Deep Learning model.
Most active strategies are based on uncertain sample selection, and even often restricted to samples lying close to the decision boundary.
Here we propose to take into consideration common domain-knowledge and enable non-expert users to train a model with fewer samples.
arXiv Detail & Related papers (2021-10-15T06:11:53Z) - Investigating a Baseline Of Self Supervised Learning Towards Reducing
Labeling Costs For Image Classification [0.0]
The study implements the kaggle.com' cats-vs-dogs dataset, Mnist and Fashion-Mnist to investigate the self-supervised learning task.
Results show that the pretext process in the self-supervised learning improves the accuracy around 15% in the downstream classification task.
arXiv Detail & Related papers (2021-08-17T06:43:05Z) - RoFL: Attestable Robustness for Secure Federated Learning [59.63865074749391]
Federated Learning allows a large number of clients to train a joint model without the need to share their private data.
To ensure the confidentiality of the client updates, Federated Learning systems employ secure aggregation.
We present RoFL, a secure Federated Learning system that improves robustness against malicious clients.
arXiv Detail & Related papers (2021-07-07T15:42:49Z) - Tighter risk certificates for neural networks [10.462889461373226]
We present two training objectives, used here for the first time in connection with training neural networks.
We also re-implement a previously used training objective based on a classical PAC-Bayes bound.
We compute risk certificates for the learnt predictors, based on part of the data used to learn the predictors.
arXiv Detail & Related papers (2020-07-25T11:02:16Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.