論文の概要: Shifting-Merging: Secure, High-Capacity and Efficient Steganography via Large Language Models
- arxiv url: http://arxiv.org/abs/2501.00786v1
- Date: Wed, 01 Jan 2025 09:51:15 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-01-05 17:11:41.354365
- Title: Shifting-Merging: Secure, High-Capacity and Efficient Steganography via Large Language Models
- Title(参考訳): シフト・マージン:大規模言語モデルによるセキュア・高容量・高能率ステガノグラフィー
- Authors: Minhao Bai, Jinshuai Yang, Kaiyi Pang, Yongfeng Huang, Yue Gao,
- Abstract要約: ステガノグラフィーは、無実のテキストの中にメッセージを安全に隠す方法を提供する。
大規模言語モデル(LLM)は高品質で明示的な分布を提供する。
ShiMer は LLM 分布の確率区間を擬似ランダムにシフトしてプライベート分布を得る。
- 参考スコア(独自算出の注目度): 25.52890764952079
- License:
- Abstract: In the face of escalating surveillance and censorship within the cyberspace, the sanctity of personal privacy has come under siege, necessitating the development of steganography, which offers a way to securely hide messages within innocent-looking texts. Previous methods alternate the texts to hide private massages, which is not secure. Large Language Models (LLMs) provide high-quality and explicit distribution, which is an available mathematical tool for secure steganography methods. However, existing attempts fail to achieve high capacity, time efficiency and correctness simultaneously, and their strongly coupling designs leave little room for refining them to achieve better performance. To provide a secure, high-capacity and efficient steganography method, we introduce ShiMer. Specifically, ShiMer pseudorandomly shifts the probability interval of the LLM's distribution to obtain a private distribution, and samples a token according to the private bits. ShiMer produced steganographic texts are indistinguishable in quality from the normal texts directly generated by the language model. To further enhance the capacity of ShiMer, we design a reordering algorithm to minimize the occurrence of interval splitting during decoding phase. Experimental results indicate that our method achieves the highest capacity and efficiency among existing secure steganography techniques.
- Abstract(参考訳): サイバー空間内での監視と検閲がエスカレートする中で、個人のプライバシーの正当性は包囲され、無実のテキストの中にメッセージを安全に隠す手段を提供するステガノグラフィー(steganography)の開発が必要とされる。
以前の方法は、安全でないプライベートマッサージを隠すためにテキストを交換する。
LLM(Large Language Models)は、セキュアなステガノグラフィー手法のための数学的ツールである、高品質で明示的な分布を提供する。
しかし、既存の試みは高いキャパシティ、時間効率、正確性を同時に達成することができず、それらの強い結合設計は、より良い性能を達成するためにそれらを精錬する余地をほとんど残さない。
安全で高容量かつ効率的なステガノグラフィー法であるShiMerについて紹介する。
具体的には、ShiMer は LLM 分布の確率間隔を疑似ランダムにシフトしてプライベート分布を取得し、プライベートビットに応じてトークンをサンプリングする。
ShiMerが作成したステガノグラフテキストは、言語モデルによって直接生成される通常のテキストと品質が区別できない。
ShiMerのキャパシティをさらに向上するため、復号フェーズにおける間隔分割の発生を最小限に抑えるリオーダーアルゴリズムを設計する。
実験結果から,本手法は既存の安全ステガノグラフィー技術の中で最も高いキャパシティと効率を達成できることが示唆された。
関連論文リスト
- Detecting, Explaining, and Mitigating Memorization in Diffusion Models [49.438362005962375]
そこで本研究では,テキスト条件予測の大きさを検査することで,暗黙のプロンプトを検出する方法を提案する。
提案手法はサンプリングアルゴリズムを中断することなくシームレスに統合し,第1世代でも高い精度を実現する。
検出戦略に基づいて,個々の単語やトークンの記憶への寄与を示す説明可能なアプローチを提示する。
論文 参考訳(メタデータ) (2024-07-31T16:13:29Z) - Generative Text Steganography with Large Language Model [10.572149957139736]
LLM-Stegaと呼ばれる大規模言語モデルのユーザインタフェースに基づくブラックボックス生成テキストステガノグラフィー手法。
まず、キーワードセットを構築し、秘密メッセージを埋め込むための新しい暗号化されたステガノグラフマッピングを設計する。
総合的な実験により、LLM-Stegaは現在の最先端手法よりも優れていることが示された。
論文 参考訳(メタデータ) (2024-04-16T02:19:28Z) - Provably Secure Disambiguating Neural Linguistic Steganography [66.30965740387047]
サブワードに基づく言語モデルを使用する際に生じるセグメンテーションの曖昧さ問題は、時にはデコード障害を引き起こす。
そこで我々はSyncPoolという,セグメンテーションのあいまいさ問題に効果的に対処する,セキュアな曖昧さ回避手法を提案する。
SyncPoolは、候補プールのサイズやトークンの分布を変えないため、確実に安全な言語ステガノグラフィー手法に適用できる。
論文 参考訳(メタデータ) (2024-03-26T09:25:57Z) - Privacy-Preserving Diffusion Model Using Homomorphic Encryption [5.282062491549009]
HE拡散(HE-Diffusion)と呼ばれる同相暗号を利用したプライバシー保護型安定拡散フレームワークを提案する。
本稿では,効率的な部分的画像暗号化を実現するための新しいミン歪み法を提案する。
HEベースのプライバシ保存型安定拡散推論の実装に成功した。
論文 参考訳(メタデータ) (2024-03-09T04:56:57Z) - Language Model Decoding as Direct Metrics Optimization [87.68281625776282]
現在の復号法は、異なる側面にわたる人間のテキストと整合するテキストを生成するのに苦労している。
本研究では,言語モデルからの復号化を最適化問題として,期待される性能と人間のテキストとの厳密なマッチングを目的とした。
この誘導分布は,人間のテキストの難易度を向上させることが保証されていることを証明し,人間のテキストの基本的な分布に対するより良い近似を示唆する。
論文 参考訳(メタデータ) (2023-10-02T09:35:27Z) - Towards General Visual-Linguistic Face Forgery Detection [95.73987327101143]
ディープフェイクは現実的な顔操作であり、セキュリティ、プライバシー、信頼に深刻な脅威をもたらす可能性がある。
既存の方法は、このタスクを、デジタルラベルまたはマスク信号を使用して検出モデルをトレーニングするバイナリ分類として扱う。
本稿では, 微粒な文レベルのプロンプトをアノテーションとして用いた, VLFFD (Visual-Linguistic Face Forgery Detection) という新しいパラダイムを提案する。
論文 参考訳(メタデータ) (2023-07-31T10:22:33Z) - Perfectly Secure Steganography Using Minimum Entropy Coupling [60.154855689780796]
カチン1998のステガノグラフィー情報理論モデルでは, ステガノグラフィーの術式は完全に安全であることが示されている。
また, 完全セキュアな手順の中で, 最小エントロピー結合によって誘導される場合に限, 情報スループットが最大になることを示す。
論文 参考訳(メタデータ) (2022-10-24T17:40:07Z) - Autoregressive Linguistic Steganography Based on BERT and Consistency
Coding [17.881686153284267]
言語ステガノグラフィ(LS)は、秘密情報をテキストに埋め込むことによって、コミュニケーションの存在を隠蔽する。
近年のアルゴリズムでは、言語モデル(LM)を用いてステガノグラフテキストを生成する。
本稿では,BERTと整合性符号化に基づく自己回帰型LSアルゴリズムを提案する。
論文 参考訳(メタデータ) (2022-03-26T02:36:55Z) - Provably Secure Generative Linguistic Steganography [29.919406917681282]
提案手法は, 新規にセキュアな生成言語分類法ADGである。
ADGは、市販の言語モデルによって与えられる確率に応じて、トークンの適応動的グループ化によって秘密情報を埋め込む。
論文 参考訳(メタデータ) (2021-06-03T17:27:10Z) - BERT-ATTACK: Adversarial Attack Against BERT Using BERT [77.82947768158132]
離散データ(テキストなど)に対するアドリアック攻撃は、連続データ(画像など)よりも難しい。
対戦型サンプルを生成するための高品質で効果的な方法である textbfBERT-Attack を提案する。
本手法は、成功率と摂動率の両方において、最先端の攻撃戦略より優れている。
論文 参考訳(メタデータ) (2020-04-21T13:30:02Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。