SPARNet: Continual Test-Time Adaptation via Sample Partitioning Strategy and Anti-Forgetting Regularization
- URL: http://arxiv.org/abs/2501.00818v1
- Date: Wed, 01 Jan 2025 12:19:17 GMT
- Title: SPARNet: Continual Test-Time Adaptation via Sample Partitioning Strategy and Anti-Forgetting Regularization
- Authors: Xinru Meng, Han Sun, Jiamei Liu, Ningzhong Liu, Huiyu Zhou,
- Abstract summary: Test-time Adaptation (TTA) aims to improve model performance when the model encounters domain changes after deployment.
Noisy pseudo-labels produced by simple self-training methods can cause error accumulation and catastrophic forgetting.
We propose a new framework named SPARNet which consists of two parts, sample partitioning strategy and anti-forgetting regularization.
- Score: 16.5927083825258
- License:
- Abstract: Test-time Adaptation (TTA) aims to improve model performance when the model encounters domain changes after deployment. The standard TTA mainly considers the case where the target domain is static, while the continual TTA needs to undergo a sequence of domain changes. This encounters a significant challenge as the model needs to adapt for the long-term and is unaware of when the domain changes occur. The quality of pseudo-labels is hard to guarantee. Noisy pseudo-labels produced by simple self-training methods can cause error accumulation and catastrophic forgetting. In this work, we propose a new framework named SPARNet which consists of two parts, sample partitioning strategy and anti-forgetting regularization. The sample partition strategy divides samples into two groups, namely reliable samples and unreliable samples. According to the characteristics of each group of samples, we choose different strategies to deal with different groups of samples. This ensures that reliable samples contribute more to the model. At the same time, the negative impacts of unreliable samples are eliminated by the mean teacher's consistency learning. Finally, we introduce a regularization term to alleviate the catastrophic forgetting problem, which can limit important parameters from excessive changes. This term enables long-term adaptation of parameters in the network. The effectiveness of our method is demonstrated in continual TTA scenario by conducting a large number of experiments on CIFAR10-C, CIFAR100-C and ImageNet-C.
Related papers
- DOTA: Distributional Test-Time Adaptation of Vision-Language Models [52.98590762456236]
Training-free test-time dynamic adapter (TDA) is a promising approach to address this issue.
We propose a simple yet effective method for DistributiOnal Test-time Adaptation (Dota)
Dota continually estimates the distributions of test samples, allowing the model to continually adapt to the deployment environment.
arXiv Detail & Related papers (2024-09-28T15:03:28Z) - Uncertainty-Calibrated Test-Time Model Adaptation without Forgetting [55.17761802332469]
Test-time adaptation (TTA) seeks to tackle potential distribution shifts between training and test data by adapting a given model w.r.t. any test sample.
Prior methods perform backpropagation for each test sample, resulting in unbearable optimization costs to many applications.
We propose an Efficient Anti-Forgetting Test-Time Adaptation (EATA) method which develops an active sample selection criterion to identify reliable and non-redundant samples.
arXiv Detail & Related papers (2024-03-18T05:49:45Z) - Decoupled Prototype Learning for Reliable Test-Time Adaptation [50.779896759106784]
Test-time adaptation (TTA) is a task that continually adapts a pre-trained source model to the target domain during inference.
One popular approach involves fine-tuning model with cross-entropy loss according to estimated pseudo-labels.
This study reveals that minimizing the classification error of each sample causes the cross-entropy loss's vulnerability to label noise.
We propose a novel Decoupled Prototype Learning (DPL) method that features prototype-centric loss computation.
arXiv Detail & Related papers (2024-01-15T03:33:39Z) - Persistent Test-time Adaptation in Recurring Testing Scenarios [12.024233973321756]
Current test-time adaptation (TTA) approaches aim to adapt a machine learning model to environments that change continuously.
Yet, it is unclear whether TTA methods can maintain their adaptability over prolonged periods.
We propose persistent TTA (PeTTA) which senses when the model is diverging towards collapse and adjusts the adaptation strategy.
arXiv Detail & Related papers (2023-11-30T02:24:44Z) - Towards Stable Test-Time Adaptation in Dynamic Wild World [60.98073673220025]
Test-time adaptation (TTA) has shown to be effective at tackling distribution shifts between training and testing data by adapting a given model on test samples.
Online model updating of TTA may be unstable and this is often a key obstacle preventing existing TTA methods from being deployed in the real world.
arXiv Detail & Related papers (2023-02-24T02:03:41Z) - Efficient Test-Time Model Adaptation without Forgetting [60.36499845014649]
Test-time adaptation seeks to tackle potential distribution shifts between training and testing data.
We propose an active sample selection criterion to identify reliable and non-redundant samples.
We also introduce a Fisher regularizer to constrain important model parameters from drastic changes.
arXiv Detail & Related papers (2022-04-06T06:39:40Z) - Rethinking Sampling Strategies for Unsupervised Person Re-identification [59.47536050785886]
We analyze the reasons for the performance differences between various sampling strategies under the same framework and loss function.
Group sampling is proposed, which gathers samples from the same class into groups.
Experiments on Market-1501, DukeMTMC-reID and MSMT17 show that group sampling achieves performance comparable to state-of-the-art methods.
arXiv Detail & Related papers (2021-07-07T05:39:58Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.