Robustness of quantum many-body scars in the presence of Markovian bath
- URL: http://arxiv.org/abs/2501.00886v2
- Date: Thu, 16 Jan 2025 16:01:57 GMT
- Title: Robustness of quantum many-body scars in the presence of Markovian bath
- Authors: Xiang-Ping Jiang, Mingdi Xu, Xuanpu Yang, Hongsheng Hou, Yucheng Wang, Lei Pan,
- Abstract summary: We study a quantum many-body system for weak ergodicity breaking hosting quantum many-body scars (QMBS)
We find that the system relaxes to a steady state dominated by QMBS, and the dissipative dynamics exhibit dynamic revivals by suitably preparing an initial state.
This makes the signature of ergodicity breaking visible over dissipative dynamics and offers potential possibilities for experimentally preparing stable QMBS.
- Score: 6.7163436483983
- License:
- Abstract: A generic closed quantum many-body system will inevitably tend to thermalization, whose local information encoded in the initial state eventually scrambles into the full space, known as quantum ergodicity. A paradigmatic exception in closed quantum systems for strong ergodicity breaking is known as many-body localization, where strong disorder-induced localization prevents the occurrence of thermalization. It is generally recognized that a localized quantum system would be delocalized under dissipation induced by the environment. However, this consequence recently has received challenges where an exotic dissipation-induced localization mechanism is proposed, and transitions between localized and extended phases are found. In this Letter, we promote this mechanism to systems for weak ergodicity breaking hosting quantum many-body scars (QMBS). We find that the system relaxes to a steady state dominated by QMBS, and the dissipative dynamics exhibit dynamic revivals by suitably preparing an initial state. We point out an experimental realization of the controlled dissipation with a cold atomic setup. This makes the signature of ergodicity breaking visible over dissipative dynamics and offers potential possibilities for experimentally preparing stable QMBS with associated coherent dynamics.
Related papers
- Frequency-resolved Purcell effect for the dissipative generation of
steady-state entanglement [49.1574468325115]
We report a driven-dissipative mechanism to generate stationary entangled $W$ states among strongly-interacting quantum emitters placed within a cavity.
The non-harmonic energy structure of the interacting ensemble allows this transition to be resonantly selected by the cavity.
Evidence of this purely dissipative mechanism should be observable in state-of-the-art cavity QED systems in the solid-state.
arXiv Detail & Related papers (2023-12-19T18:04:22Z) - Entanglement and localization in long-range quadratic Lindbladians [49.1574468325115]
Signatures of localization have been observed in condensed matter and cold atomic systems.
We propose a model of one-dimensional chain of non-interacting, spinless fermions coupled to a local ensemble of baths.
We show that the steady state of the system undergoes a localization entanglement phase transition by tuning $p$ which remains stable in the presence of coherent hopping.
arXiv Detail & Related papers (2023-03-13T12:45:25Z) - Emergent pair localization in a many-body quantum spin system [0.0]
Generically, non-integrable quantum systems are expected to thermalize as they comply with the Eigenstate Thermalization Hypothesis.
In the presence of strong disorder, the dynamics can possibly slow down to a degree that systems fail to thermalize on experimentally accessible timescales.
We study an ensemble of Heisenberg spins with a tunable distribution of random coupling strengths realized by a Rydberg quantum simulator.
arXiv Detail & Related papers (2022-07-28T16:31:18Z) - Unconventional mechanism of virtual-state population through dissipation [125.99533416395765]
We report a phenomenon occurring in open quantum systems by which virtual states can acquire a sizable population in the long time limit.
This means that the situation where the virtual state remains unpopulated can be metastable.
We show how these results can be relevant for practical questions such as the generation of stable and metastable entangled states in dissipative systems of interacting qubits.
arXiv Detail & Related papers (2022-02-24T17:09:43Z) - Thermalization of locally perturbed many-body quantum systems [0.0]
We analytically demonstrate that systems satisfying the weak eigenstate thermalization hypothesis exhibit thermalization for two very natural classes of far-from-equilibrium initial conditions.
arXiv Detail & Related papers (2022-02-01T08:16:05Z) - Observation of many-body scarring in a Bose--Hubbard quantum simulator [6.039858993863839]
We realize many-body scarring in a Bose-Hubbard quantum simulator from previously unknown initial conditions.
We demonstrate that scarring traps the many-body system in a low-entropy subspace.
arXiv Detail & Related papers (2022-01-03T19:00:00Z) - Fast Thermalization from the Eigenstate Thermalization Hypothesis [69.68937033275746]
Eigenstate Thermalization Hypothesis (ETH) has played a major role in understanding thermodynamic phenomena in closed quantum systems.
This paper establishes a rigorous link between ETH and fast thermalization to the global Gibbs state.
Our results explain finite-time thermalization in chaotic open quantum systems.
arXiv Detail & Related papers (2021-12-14T18:48:31Z) - Stabilizing Disorder-Free Localization [0.0]
Disorder-free localization is a paradigm of nonergodicity in translation-in quantum many-body systems hosting gauge symmetries.
We show that translation-invariant textitsingle-body gauge terms induce a quantum Zeno effect that reliably protects disorder-free localization against errors up to times in the protection strength.
arXiv Detail & Related papers (2021-11-03T18:00:03Z) - Signatures of bath-induced quantum avalanches in a many-body--localized
system [47.187609203210705]
Quantum avalanches occur when the system is locally coupled to a small thermal inclusion that acts as a bath.
We realize an interface between a many-body--localized system and a thermal inclusion of variable size, and study its dynamics.
arXiv Detail & Related papers (2020-12-30T18:34:34Z) - Controlling many-body dynamics with driven quantum scars in Rydberg atom
arrays [41.74498230885008]
We experimentally investigate non-equilibrium dynamics following rapid quenches in a many-body system composed of 3 to 200 strongly interacting qubits in one and two spatial dimensions.
We discover that scar revivals can be stabilized by periodic driving, which generates a robust subharmonic response akin to discrete time-crystalline order.
arXiv Detail & Related papers (2020-12-22T19:00:02Z) - Localized dynamics following a quantum quench in a non-integrable
system: An example on the sawtooth ladder [0.0]
We study the quench dynamics of interacting hardcore bosons on a sawtooth ladder.
We identify a set of initial states for which this system exhibits characteristic signatures of localization.
We argue that the localized dynamics originates from an interaction induced quantum interference.
arXiv Detail & Related papers (2020-10-29T13:28:33Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.