論文の概要: Population Aware Diffusion for Time Series Generation
- arxiv url: http://arxiv.org/abs/2501.00910v1
- Date: Wed, 01 Jan 2025 17:53:43 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-01-05 17:16:11.422437
- Title: Population Aware Diffusion for Time Series Generation
- Title(参考訳): 時系列生成のための集団認識拡散
- Authors: Yang Li, Han Meng, Zhenyu Bi, Ingolv T. Urnes, Haipeng Chen,
- Abstract要約: 本研究では,人口レベルの特性をよりよく保存する新しいTS生成モデルであるPopulation-Aware Diffusion for Time Series (PaD-TS)を提案する。
本研究では,PaD-TSによる実データと合成データ間の平均CC分布シフトスコアを5.9倍改善すると同時に,個々のレベルの認証における最先端モデルに匹敵する性能を維持できることを示す。
- 参考スコア(独自算出の注目度): 6.681433101586288
- License:
- Abstract: Diffusion models have shown promising ability in generating high-quality time series (TS) data. Despite the initial success, existing works mostly focus on the authenticity of data at the individual level, but pay less attention to preserving the population-level properties on the entire dataset. Such population-level properties include value distributions for each dimension and distributions of certain functional dependencies (e.g., cross-correlation, CC) between different dimensions. For instance, when generating house energy consumption TS data, the value distributions of the outside temperature and the kitchen temperature should be preserved, as well as the distribution of CC between them. Preserving such TS population-level properties is critical in maintaining the statistical insights of the datasets, mitigating model bias, and augmenting downstream tasks like TS prediction. Yet, it is often overlooked by existing models. Hence, data generated by existing models often bear distribution shifts from the original data. We propose Population-aware Diffusion for Time Series (PaD-TS), a new TS generation model that better preserves the population-level properties. The key novelties of PaD-TS include 1) a new training method explicitly incorporating TS population-level property preservation, and 2) a new dual-channel encoder model architecture that better captures the TS data structure. Empirical results in major benchmark datasets show that PaD-TS can improve the average CC distribution shift score between real and synthetic data by 5.9x while maintaining a performance comparable to state-of-the-art models on individual-level authenticity.
- Abstract(参考訳): 拡散モデルは、高品質な時系列(TS)データを生成する上で有望な能力を示している。
初期の成功にもかかわらず、既存の研究は主に個々のレベルのデータの信頼性に焦点を当てているが、データセット全体の人口レベルの特性を保存することにはあまり注意を払わない。
このような集団レベルの性質は、各次元の値分布と、異なる次元間の特定の機能的依存(例えば、相互相関、CC)の分布を含む。
例えば、家庭のエネルギー消費TSデータを生成する際には、外気温と台所温度の値分布とそれら間のCCの分布を保存する必要がある。
このようなTSの人口レベルの特性を保存することは、データセットの統計的洞察を維持し、モデルのバイアスを緩和し、TS予測のような下流タスクを増強するために重要である。
しかし、既存のモデルでは見過ごされがちである。
したがって、既存のモデルによって生成されたデータは、しばしば元のデータから分散シフトを持つ。
本研究では,人口レベルの特性をよりよく保存する新しいTS生成モデルであるPopulation-Aware Diffusion for Time Series (PaD-TS)を提案する。
PaD-TSの重要な特徴は
1)TS人口レベルの資産保存を明示的に取り入れた新しい研修方法、及び
2)TSデータ構造をよりよく捉えた新しいデュアルチャネルエンコーダモデルアーキテクチャ。
主要なベンチマークデータセットの実証結果は、PaD-TSが個々のレベルの認証に関する最先端モデルに匹敵するパフォーマンスを維持しながら、実データと合成データの間のCC分布シフトスコアを5.9倍改善できることを示している。
関連論文リスト
- Tackling Data Heterogeneity in Federated Time Series Forecasting [61.021413959988216]
時系列予測は、エネルギー消費予測、病気の伝染モニタリング、天気予報など、様々な実世界の応用において重要な役割を果たす。
既存のほとんどのメソッドは、分散デバイスから中央クラウドサーバに大量のデータを収集する、集中的なトレーニングパラダイムに依存しています。
本稿では,情報合成データを補助的知識キャリアとして生成することにより,データの均一性に対処する新しいフレームワークであるFed-TRENDを提案する。
論文 参考訳(メタデータ) (2024-11-24T04:56:45Z) - Synthesizing Multimodal Electronic Health Records via Predictive Diffusion Models [69.06149482021071]
EHRPDと呼ばれる新しいEHRデータ生成モデルを提案する。
時間間隔推定を組み込んだ拡散モデルである。
我々は2つの公開データセットで実験を行い、忠実さ、プライバシー、実用性の観点からEPHPDを評価する。
論文 参考訳(メタデータ) (2024-06-20T02:20:23Z) - Transfer Learning for Diffusion Models [43.10840361752551]
拡散モデルは高品質な合成サンプルを一貫して生成する。
コレクションコストや関連するリスクのため、現実のアプリケーションでは実用的ではありません。
本稿では,従来の微調整法や正規化法とは異なる新しいアプローチであるTransfer Guided Diffusion Process (TGDP)を紹介する。
論文 参考訳(メタデータ) (2024-05-27T06:48:58Z) - An improved tabular data generator with VAE-GMM integration [9.4491536689161]
本稿では,現在のアプローチの限界に対処する新しい変分オートエンコーダ(VAE)モデルを提案する。
本手法は,TVAEモデルにインスパイアされたベイジアン・ガウス混合モデル(BGM)をVAEアーキテクチャに組み込む。
我々は,2つの医療関連データセットを含む混合データ型を持つ実世界の3つのデータセットに対して,我々のモデルを徹底的に検証する。
論文 参考訳(メタデータ) (2024-04-12T12:31:06Z) - Distribution-Aware Data Expansion with Diffusion Models [55.979857976023695]
本研究では,分散型拡散モデルに基づくトレーニングフリーなデータ拡張フレームワークであるDistDiffを提案する。
DistDiffは、オリジナルデータのみにトレーニングされたモデルと比較して、さまざまなデータセットの精度を一貫して向上させる。
論文 参考訳(メタデータ) (2024-03-11T14:07:53Z) - Latent Semantic Consensus For Deterministic Geometric Model Fitting [109.44565542031384]
我々はLSC(Latent Semantic Consensus)と呼ばれる効果的な方法を提案する。
LSCは、モデルフィッティング問題をデータポイントとモデル仮説に基づく2つの潜在意味空間に定式化する。
LSCは、一般的な多構造モデルフィッティングのために、数ミリ秒以内で一貫した、信頼性の高いソリューションを提供することができる。
論文 参考訳(メタデータ) (2024-03-11T05:35:38Z) - Discrete Diffusion Modeling by Estimating the Ratios of the Data Distribution [67.9215891673174]
離散空間に対するスコアマッチングを自然に拡張する新たな損失として,スコアエントロピーを提案する。
標準言語モデリングタスク上で,Score Entropy Discrete Diffusionモデルをテストする。
論文 参考訳(メタデータ) (2023-10-25T17:59:12Z) - Improving Correlation Capture in Generating Imbalanced Data using
Differentially Private Conditional GANs [2.2265840715792735]
DP-CGANSは,データ変換,サンプリング,コンディショニング,ネットワークトレーニングにより,現実的かつプライバシ保護データを生成する,微分プライベートな条件付きGANフレームワークである。
統計的類似性,機械学習性能,プライバシ測定の点から,3つの公開データセットと2つの実世界の個人健康データセットの最先端生成モデルを用いて,我々のモデルを広範囲に評価した。
論文 参考訳(メタデータ) (2022-06-28T06:47:27Z) - Time-series Transformer Generative Adversarial Networks [5.254093731341154]
本稿では,時系列データに特化して生じる制約について考察し,合成時系列を生成するモデルを提案する。
合成時系列データを生成するモデルには,(1)実列の段階的条件分布を捉えること,(2)実列全体の結合分布を忠実にモデル化すること,の2つの目的がある。
TsT-GANは、Transformerアーキテクチャを活用してデシラタを満足させ、その性能を5つのデータセット上の5つの最先端モデルと比較するフレームワークである。
論文 参考訳(メタデータ) (2022-05-23T10:04:21Z) - ClusterQ: Semantic Feature Distribution Alignment for Data-Free
Quantization [111.12063632743013]
本稿では,ClusterQと呼ばれるデータフリーな量子化手法を提案する。
意味的特徴のクラス間分離性を高めるために,特徴分布統計をクラスタ化し,整列する。
また、クラス内分散を組み込んで、クラスワイドモードの崩壊を解決する。
論文 参考訳(メタデータ) (2022-04-30T06:58:56Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。