論文の概要: CoordFlow: Coordinate Flow for Pixel-wise Neural Video Representation
- arxiv url: http://arxiv.org/abs/2501.00975v1
- Date: Wed, 01 Jan 2025 22:58:06 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-01-05 17:15:42.586391
- Title: CoordFlow: Coordinate Flow for Pixel-wise Neural Video Representation
- Title(参考訳): CoordFlow: ピクセルワイドなニューラルビデオ表現のためのコーディネートフロー
- Authors: Daniel Silver, Ron Kimmel,
- Abstract要約: Implicit Neural Representation (INR)は、従来の変換ベースの手法に代わる有望な代替手段である。
ビデオ圧縮のための新しいピクセルワイドINRであるCoordFlowを紹介する。
他のピクセルワイドINRと比較すると、最先端のフレームワイド技術と比較すると、オンパー性能が向上する。
- 参考スコア(独自算出の注目度): 11.364753833652182
- License:
- Abstract: In the field of video compression, the pursuit for better quality at lower bit rates remains a long-lasting goal. Recent developments have demonstrated the potential of Implicit Neural Representation (INR) as a promising alternative to traditional transform-based methodologies. Video INRs can be roughly divided into frame-wise and pixel-wise methods according to the structure the network outputs. While the pixel-based methods are better for upsampling and parallelization, frame-wise methods demonstrated better performance. We introduce CoordFlow, a novel pixel-wise INR for video compression. It yields state-of-the-art results compared to other pixel-wise INRs and on-par performance compared to leading frame-wise techniques. The method is based on the separation of the visual information into visually consistent layers, each represented by a dedicated network that compensates for the layer's motion. When integrated, a byproduct is an unsupervised segmentation of video sequence. Objects motion trajectories are implicitly utilized to compensate for visual-temporal redundancies. Additionally, the proposed method provides inherent video upsampling, stabilization, inpainting, and denoising capabilities.
- Abstract(参考訳): ビデオ圧縮の分野では、低ビットレートでより良い品質を求めることが長期的な目標である。
近年の進歩は、従来のトランスフォーメーションベースの手法に代わる有望な代替手段として、インプリシットニューラル表現(INR)の可能性を示している。
ビデオINRは、ネットワーク出力の構造に応じて、大まかにフレームワイズとピクセルワイズに分けることができる。
画素ベースの手法はアップサンプリングや並列化に優れているが,フレームワイド方式では性能が向上した。
ビデオ圧縮のための新しいピクセルワイドINRであるCoordFlowを紹介する。
他のピクセルワイドINRと比較すると、最先端のフレームワイド技術と比較すると、オンパー性能が向上する。
この手法は視覚情報を視覚的に一貫した層に分離し、それぞれの層の動きを補う専用ネットワークで表現する。
統合されると、副産物はビデオシーケンスの教師なしセグメンテーションとなる。
物体の動き軌跡は視覚的時間的冗長性の補正に暗黙的に利用される。
さらに,本提案手法は,映像のアップサンプリング,安定化,塗装,デノナイジング機能を提供する。
関連論文リスト
- Boosting Neural Representations for Videos with a Conditional Decoder [28.073607937396552]
Inlicit Neural representations (INRs) は、ビデオストレージと処理において有望なアプローチとして登場した。
本稿では,現在の暗黙的ビデオ表現手法のための普遍的なブースティングフレームワークを提案する。
論文 参考訳(メタデータ) (2024-02-28T08:32:19Z) - Differentiable Resolution Compression and Alignment for Efficient Video
Classification and Retrieval [16.497758750494537]
本稿では,高解像度圧縮・アライメント機構を備えた効率的な映像表現ネットワークを提案する。
我々は、相性および非相性フレーム特徴を符号化するために、微分可能なコンテキスト対応圧縮モジュールを利用する。
我々は,異なる解像度のフレーム特徴間のグローバル時間相関を捉えるために,新しい解像度変換器層を導入する。
論文 参考訳(メタデータ) (2023-09-15T05:31:53Z) - DNeRV: Modeling Inherent Dynamics via Difference Neural Representation
for Videos [53.077189668346705]
映像の差分表現(eRV)
我々はこれを制限関数の適合性とフレーム差の重要性の観点から分析する。
DNeRVは最先端のニューラル圧縮アプローチと競合する結果を得る。
論文 参考訳(メタデータ) (2023-04-13T13:53:49Z) - FFNeRV: Flow-Guided Frame-Wise Neural Representations for Videos [5.958701846880935]
ビデオ中のフレーム間の時間的冗長性を利用するために,フロー情報をフレームワイズ表現に組み込む新しい手法であるFFNeRVを提案する。
モデル圧縮技術により、FFNeRVは広く使われている標準ビデオコーデック(H.264とHEVC)より優れ、最先端のビデオ圧縮アルゴリズムと同等に動作する。
論文 参考訳(メタデータ) (2022-12-23T12:51:42Z) - Spatio-Temporal Deformable Attention Network for Video Deblurring [21.514099863308676]
ビデオデブロアリング法の重要な成功要因は、隣接するビデオフレームのシャープピクセルと中フレームのぼやけたピクセルを補償することである。
ビデオフレームの画素単位のぼかしレベルを考慮し,シャープな画素情報を抽出するSTDANetを提案する。
論文 参考訳(メタデータ) (2022-07-22T03:03:08Z) - Neighbor Correspondence Matching for Flow-based Video Frame Synthesis [90.14161060260012]
フローベースフレーム合成のための近傍対応マッチング(NCM)アルゴリズムを提案する。
NCMは現在のフレームに依存しない方法で実行され、各ピクセルの時空間近傍でマルチスケールの対応を確立する。
粗いスケールのモジュールは、近隣の対応を利用して大きな動きを捉えるように設計されている。
論文 参考訳(メタデータ) (2022-07-14T09:17:00Z) - ARVo: Learning All-Range Volumetric Correspondence for Video Deblurring [92.40655035360729]
ビデオデブラリングモデルは連続フレームを利用して、カメラの揺動や物体の動きからぼやけを取り除く。
特徴空間におけるボケフレーム間の空間的対応を学習する新しい暗黙的手法を提案する。
提案手法は,新たに収集したビデオデブレーション用ハイフレームレート(1000fps)データセットとともに,広く採用されているDVDデータセット上で評価される。
論文 参考訳(メタデータ) (2021-03-07T04:33:13Z) - Motion-blurred Video Interpolation and Extrapolation [72.3254384191509]
本稿では,映像から鮮明なフレームをエンドツーエンドに切り離し,補間し,外挿する新しい枠組みを提案する。
予測フレーム間の時間的コヒーレンスを確保し,潜在的な時間的あいまいさに対処するために,単純で効果的なフローベースルールを提案する。
論文 参考訳(メタデータ) (2021-03-04T12:18:25Z) - Learning Spatial and Spatio-Temporal Pixel Aggregations for Image and
Video Denoising [104.59305271099967]
ピクセル集計ネットワークを提示し、画像デノイジングのためのピクセルサンプリングと平均戦略を学びます。
時間空間にまたがるサンプル画素をビデオデノナイズするための画素集約ネットワークを開発した。
本手法は,動的シーンにおける大きな動きに起因する誤認問題を解決することができる。
論文 参考訳(メタデータ) (2021-01-26T13:00:46Z) - Video Face Super-Resolution with Motion-Adaptive Feedback Cell [90.73821618795512]
深部畳み込みニューラルネットワーク(CNN)の発展により,ビデオ超解像法(VSR)は近年,顕著な成功を収めている。
本稿では,動作補償を効率的に捕捉し,適応的にネットワークにフィードバックする,シンプルで効果的なブロックである動き適応型フィードバックセル(MAFC)を提案する。
論文 参考訳(メタデータ) (2020-02-15T13:14:10Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。