論文の概要: Are LLMs effective psychological assessors? Leveraging adaptive RAG for interpretable mental health screening through psychometric practice
- arxiv url: http://arxiv.org/abs/2501.00982v1
- Date: Thu, 02 Jan 2025 00:01:54 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-01-05 17:16:48.509696
- Title: Are LLMs effective psychological assessors? Leveraging adaptive RAG for interpretable mental health screening through psychometric practice
- Title(参考訳): LLMは心理的アセスメントに有効か? : 精神医学的実践を通しての心的健康診断に適応的なRAGを活用する
- Authors: Federico Ravenda, Seyed Ali Bahrainian, Andrea Raballo, Antonietta Mira, Noriko Kando,
- Abstract要約: 本稿では,ソーシャルメディアの投稿を分析し,心理的アンケートを補完する適応型検索・拡張生成(RAG)手法を提案する。
本手法は,心理調査において各質問に対する最も関連性の高いユーザ投稿を検索し,ゼロショット環境でのアンケート結果の予測にLarge Language Models (LLMs) を用いる。
- 参考スコア(独自算出の注目度): 2.9775344067885974
- License:
- Abstract: In psychological practice, standardized questionnaires serve as essential tools for assessing mental constructs (e.g., attitudes, traits, and emotions) through structured questions (aka items). With the increasing prevalence of social media platforms where users share personal experiences and emotions, researchers are exploring computational methods to leverage this data for rapid mental health screening. In this study, we propose a novel adaptive Retrieval-Augmented Generation (RAG) approach that completes psychological questionnaires by analyzing social media posts. Our method retrieves the most relevant user posts for each question in a psychological survey and uses Large Language Models (LLMs) to predict questionnaire scores in a zero-shot setting. Our findings are twofold. First we demonstrate that this approach can effectively predict users' responses to psychological questionnaires, such as the Beck Depression Inventory II (BDI-II), achieving performance comparable to or surpassing state-of-the-art models on Reddit-based benchmark datasets without relying on training data. Second, we show how this methodology can be generalized as a scalable screening tool, as the final assessment is systematically derived by completing standardized questionnaires and tracking how individual item responses contribute to the diagnosis, aligning with established psychometric practices.
- Abstract(参考訳): 心理学的実践において、標準化されたアンケートは、構造化された質問(いわゆる項目)を通して精神構成(例えば、態度、特徴、感情)を評価するための必須のツールとして機能する。
ユーザーが個人の体験や感情を共有するソーシャルメディアプラットフォームの普及に伴い、研究者はこれらのデータを迅速なメンタルヘルススクリーニングに活用するための計算方法を模索している。
本研究では,ソーシャルメディアの投稿を分析し,心理的アンケートを完了させる適応型検索・拡張生成(RAG)手法を提案する。
本手法は,心理調査において各質問に対する最も関連性の高いユーザ投稿を検索し,ゼロショット環境でのアンケート結果の予測にLarge Language Models (LLMs) を用いる。
私たちの発見は2つあります。
まず、このアプローチは、トレーニングデータに頼ることなく、Redditベースのベンチマークデータセットの最先端モデルに匹敵する、あるいは超越したパフォーマンスを達成する、Beck Depression Inventory II (BDI-II)のような、心理的アンケートに対するユーザの反応を効果的に予測できることを実証する。
第2に、この方法論をスケーラブルなスクリーニングツールとして一般化する方法を示し、最終評価は、標準化されたアンケートを完了し、個々の項目の反応が診断にどう貢献するかを、確立された心理測定の実践と整合して追跡することによって体系的に導かれる。
関連論文リスト
- Understanding Student Sentiment on Mental Health Support in Colleges Using Large Language Models [5.3204794327005205]
本稿では,学生音声調査データを用いて,大規模言語モデル(LLM)を用いたメンタルヘルス支援に対する学生の感情分析を行う。
従来の機械学習手法と最先端のLCMの両方の調査は、この新しいデータセット上でのGPT-3.5とBERTの最高のパフォーマンスを示した。
論文 参考訳(メタデータ) (2024-11-18T02:53:15Z) - SouLLMate: An Adaptive LLM-Driven System for Advanced Mental Health Support and Assessment, Based on a Systematic Application Survey [9.146311285410631]
メンタルヘルスの問題は個人の日常生活に大きな影響を及ぼすが、多くの人は利用可能なオンラインリソースでも必要な支援を受けていない。
この研究は、最先端のAI技術を通じて、アクセス可能で、スティグマフリーで、パーソナライズされ、リアルタイムなメンタルヘルスサポートを提供することを目的としている。
論文 参考訳(メタデータ) (2024-10-06T17:11:29Z) - Quantifying AI Psychology: A Psychometrics Benchmark for Large Language Models [57.518784855080334]
大きな言語モデル(LLM)は例外的なタスク解決能力を示しており、人間に似た役割を担っている。
本稿では,LLMにおける心理学的次元を調査するための枠組みとして,心理学的識別,評価データセットのキュレーション,結果検証による評価について述べる。
本研究では,個性,価値観,感情,心の理論,モチベーション,知性の6つの心理学的側面を網羅した総合的心理測定ベンチマークを導入する。
論文 参考訳(メタデータ) (2024-06-25T16:09:08Z) - LLM Questionnaire Completion for Automatic Psychiatric Assessment [49.1574468325115]
大規模言語モデル(LLM)を用いて、非構造的心理面接を、様々な精神科領域と人格領域にまたがる構造化された質問票に変換する。
得られた回答は、うつ病の標準化された精神医学的指標(PHQ-8)とPTSD(PCL-C)の予測に使用される特徴として符号化される。
論文 参考訳(メタデータ) (2024-06-09T09:03:11Z) - SeSaMe: A Framework to Simulate Self-Reported Ground Truth for Mental Health Sensing Studies [3.7398400615298466]
メンタルモデル (SeSaMe) は、デジタルメンタルヘルス研究における参加者の負担を軽減する枠組みである。
事前訓練された大規模言語モデル(LLM)を活用することで、SeSaMeは参加者の心理的尺度に対する反応のシミュレーションを可能にする。
本稿では,GPT-4を用いて1つのスケールで応答をシミュレートするSeSaMeの応用例を示す。
論文 参考訳(メタデータ) (2024-03-25T21:48:22Z) - PsychoGAT: A Novel Psychological Measurement Paradigm through Interactive Fiction Games with LLM Agents [68.50571379012621]
心理的な測定は、精神健康、自己理解、そして個人の発達に不可欠である。
心理学ゲームAgenT(サイコガト)は、信頼性、収束妥当性、差別的妥当性などの心理学的指標において統計的に有意な卓越性を達成している。
論文 参考訳(メタデータ) (2024-02-19T18:00:30Z) - PsyCoT: Psychological Questionnaire as Powerful Chain-of-Thought for
Personality Detection [50.66968526809069]
PsyCoTと呼ばれる新しい人格検出手法を提案する。これは、個人がマルチターン対話方式で心理的質問を完遂する方法を模倣するものである。
実験の結果,PsyCoTは人格検出におけるGPT-3.5の性能とロバスト性を大幅に向上させることがわかった。
論文 参考訳(メタデータ) (2023-10-31T08:23:33Z) - Psy-LLM: Scaling up Global Mental Health Psychological Services with
AI-based Large Language Models [3.650517404744655]
Psy-LLMフレームワークは、大規模言語モデルを利用したAIベースのツールである。
我々のフレームワークは、トレーニング済みのLLMと心理学者や広範囲にクロールされた心理学記事の現実のプロフェッショナルQ&Aを組み合わせる。
医療専門家のためのフロントエンドツールとして機能し、即時対応とマインドフルネス活動を提供して患者のストレスを軽減する。
論文 参考訳(メタデータ) (2023-07-22T06:21:41Z) - Semantic Similarity Models for Depression Severity Estimation [53.72188878602294]
本稿では、ソーシャルメディアの文章に基づいて、個人のうつ病の重症度を研究するための効率的なセマンティックパイプラインを提案する。
我々は,抑うつ症状と重度レベルに対応する代表訓練文の指標に対して意味的ランキングを生成するために,テストユーザ文を使用する。
本手法を2つのRedditベースのベンチマークで評価し,うつ病の重症度を指標として,最先端技術よりも30%改善した。
論文 参考訳(メタデータ) (2022-11-14T18:47:26Z) - MET: Multimodal Perception of Engagement for Telehealth [52.54282887530756]
ビデオから人間のエンゲージメントレベルを知覚する学習ベースアルゴリズムMETを提案する。
我々はメンタルヘルス患者のエンゲージメント検出のための新しいデータセットMEDICAをリリースした。
論文 参考訳(メタデータ) (2020-11-17T15:18:38Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。