論文の概要: LlaMADRS: Prompting Large Language Models for Interview-Based Depression Assessment
- arxiv url: http://arxiv.org/abs/2501.03624v1
- Date: Tue, 07 Jan 2025 08:49:04 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-01-08 16:58:02.994255
- Title: LlaMADRS: Prompting Large Language Models for Interview-Based Depression Assessment
- Title(参考訳): LlaMADRS:インタビューベースの抑うつ評価のための大規模言語モデルの提案
- Authors: Gaoussou Youssouf Kebe, Jeffrey M. Girard, Einat Liebenthal, Justin Baker, Fernando De la Torre, Louis-Philippe Morency,
- Abstract要約: LlaMADRSは、オープンソースのLarge Language Models(LLM)を利用して、うつ病の重症度評価を自動化する新しいフレームワークである。
本研究は,クリニカルインタヴューの解釈・スコアリングにおけるモデル指導のために,慎重に設計された手がかりを用いたゼロショットプロンプト戦略を用いている。
実世界における236件のインタビューを対象とし,臨床評価と強い相関性を示した。
- 参考スコア(独自算出の注目度): 75.44934940580112
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: This study introduces LlaMADRS, a novel framework leveraging open-source Large Language Models (LLMs) to automate depression severity assessment using the Montgomery-Asberg Depression Rating Scale (MADRS). We employ a zero-shot prompting strategy with carefully designed cues to guide the model in interpreting and scoring transcribed clinical interviews. Our approach, tested on 236 real-world interviews from the Context-Adaptive Multimodal Informatics (CAMI) dataset, demonstrates strong correlations with clinician assessments. The Qwen 2.5--72b model achieves near-human level agreement across most MADRS items, with Intraclass Correlation Coefficients (ICC) closely approaching those between human raters. We provide a comprehensive analysis of model performance across different MADRS items, highlighting strengths and current limitations. Our findings suggest that LLMs, with appropriate prompting, can serve as efficient tools for mental health assessment, potentially increasing accessibility in resource-limited settings. However, challenges remain, particularly in assessing symptoms that rely on non-verbal cues, underscoring the need for multimodal approaches in future work.
- Abstract(参考訳): 本稿では,モンゴメリー・アズバーグ抑うつ評価尺度(MADRS)を用いて,オープンソースのLarge Language Models(LLMs)を利用した抑うつ度評価を自動化する新しいフレームワークであるLlaMADRSを紹介する。
本研究は,クリニカルインタヴューの解釈・スコアリングにおけるモデル指導のために,慎重に設計された手がかりを用いたゼロショットプロンプト戦略を用いている。
CAMI(Context-Adaptive Multimodal Informatics)データセットから実世界の236件のインタビューを行い,臨床評価と強い相関性を示した。
Qwen 2.5--72bモデルでは、ほとんどのMADRS項目のほぼ人間レベルの一致が達成され、クラス内相関係数(ICC)は、ヒトのレイパー間の関係に近づいた。
我々は,様々なMADRS項目のモデル性能を総合的に分析し,強みと現在の限界を明らかにする。
以上の結果から, LLMは, 適切なプロンプトを伴って, 精神的健康評価の効率的なツールとなり, 資源制限によるアクセシビリティの向上が示唆された。
しかし、特に非言語的手がかりに依存する症状を評価する際には、今後の研究におけるマルチモーダルなアプローチの必要性が強調されている。
関連論文リスト
- TAMA: A Human-AI Collaborative Thematic Analysis Framework Using Multi-Agent LLMs for Clinical Interviews [54.35097932763878]
Thematic Analysis (TA) は、構造化されていないテキストデータの潜在意味を明らかにするために広く使われている定性的手法である。
本稿では,多エージェントLEMを用いた人間とAIの協調的テーマ分析フレームワークTAMAを提案する。
TAMA は既存の LLM 支援TA アプローチよりも優れており,高い主題的ヒット率,カバレッジ,独特性を実現している。
論文 参考訳(メタデータ) (2025-03-26T15:58:16Z) - Generating Medically-Informed Explanations for Depression Detection using LLMs [1.325953054381901]
ソーシャルメディアデータからうつ病を早期に検出することは、タイムリーな介入の貴重な機会となる。
本稿では,LLM-MTD(Large Language Model for Multi-Task Depression Detection)を提案する。
論文 参考訳(メタデータ) (2025-03-18T19:23:22Z) - Structured Outputs Enable General-Purpose LLMs to be Medical Experts [50.02627258858336]
大規模言語モデル(LLM)は、しばしばオープンエンドの医学的問題に苦しむ。
本稿では,構造化医療推論を利用した新しいアプローチを提案する。
我々の手法は85.8のファクチュアリティスコアを達成し、微調整されたモデルを上回る。
論文 参考訳(メタデータ) (2025-03-05T05:24:55Z) - Efficient or Powerful? Trade-offs Between Machine Learning and Deep Learning for Mental Illness Detection on Social Media [0.036136619420474754]
ソーシャルメディアプラットフォームは、うつ病、不安、自殺などの状況に関するユーザー生成の議論を捉え、メンタルヘルスのトレンドに関する貴重な洞察を提供する。
機械学習(ML)とディープラーニング(DL)モデルは、テキストデータからメンタルヘルス状態を分類するためにますます応用されている。
本研究では、ALBERTやGated Recurrent Units(GRU)といったディープラーニングアーキテクチャとともに、ロジスティック回帰、ランダムフォレスト、LightGBMを含む複数のMLモデルを評価する。
その結果,MLモデルとDLモデルでは,中規模データセットの分類性能が同等であることが示唆された。
論文 参考訳(メタデータ) (2025-03-03T00:51:41Z) - Conversation AI Dialog for Medicare powered by Finetuning and Retrieval Augmented Generation [0.0]
大きな言語モデル(LLM)は、対話生成を含む自然言語処理タスクにおいて印象的な機能を示している。
本研究の目的は、LoRAによる微調整とRetrieval-Augmented Generationフレームワークという、2つの重要な技術の比較分析を行うことである。
論文 参考訳(メタデータ) (2025-02-04T11:50:40Z) - VALOR-EVAL: Holistic Coverage and Faithfulness Evaluation of Large Vision-Language Models [57.43276586087863]
LVLM(Large Vision-Language Models)は幻覚に悩まされ、このモデルでは可聴音を発生させるが、実際には誤出力を発生させる。
既存のベンチマークはスコープに限られており、主にオブジェクト幻覚に焦点を当てている。
対象,属性,関係を多次元のベンチマークで表現し,連想バイアスに基づいて画像を選択する。
論文 参考訳(メタデータ) (2024-04-22T04:49:22Z) - Dynamic Evaluation of Large Language Models by Meta Probing Agents [44.20074234421295]
大規模言語モデル(LLM)を評価するためのメタ・プロブリング・エージェント(MPA)を提案する。
MPAはDyVal 2の重要なコンポーネントであり、DyValcitepzhu2023dyvalを自然に拡張している。
MPAは、探索および判定エージェントを設計し、元の評価問題を心理測定理論に従って新しいものに自動的に変換する。
論文 参考訳(メタデータ) (2024-02-21T06:46:34Z) - From Classification to Clinical Insights: Towards Analyzing and Reasoning About Mobile and Behavioral Health Data With Large Language Models [21.427976533706737]
我々は,多センサデータから臨床的に有用な知見を合成するために,大規模言語モデルを活用する新しいアプローチを採っている。
うつ病や不安などの症状とデータの傾向がどのように関連しているかを,LSMを用いて推論する思考促進手法の連鎖を構築した。
GPT-4のようなモデルでは数値データの75%を正確に参照しており、臨床参加者は、この手法を用いて自己追跡データを解釈することへの強い関心を表明している。
論文 参考訳(メタデータ) (2023-11-21T23:53:27Z) - Are Large Language Models Really Robust to Word-Level Perturbations? [68.60618778027694]
本稿では,事前学習した報酬モデルを診断ツールとして活用する,新たな合理的評価手法を提案する。
より長い会話は、質問を理解する能力の観点から言語モデルの包括的把握を示す。
この結果から,LLMは日常言語でよく使われる単語レベルの摂動に対する脆弱性をしばしば示している。
論文 参考訳(メタデータ) (2023-09-20T09:23:46Z) - Rethinking the Evaluation for Conversational Recommendation in the Era
of Large Language Models [115.7508325840751]
近年の大規模言語モデル(LLM)の成功は、より強力な対話レコメンデーションシステム(CRS)を開発する大きな可能性を示している。
本稿では,ChatGPTの会話レコメンデーションへの活用について検討し,既存の評価プロトコルが不十分であることを明らかにする。
LLMをベースとしたユーザシミュレータを用いた対話型評価手法iEvaLMを提案する。
論文 参考訳(メタデータ) (2023-05-22T15:12:43Z) - Large Language Models Encode Clinical Knowledge [21.630872464930587]
大規模言語モデル(LLM)は、自然言語の理解と生成において印象的な能力を示している。
本稿では, 現実性, 正確性, 潜在的害, バイアスを含む複数の軸に沿ったモデル回答の人為的評価のための枠組みを提案する。
本研究は,モデル尺度とインストラクション・インシデント・チューニングにより,理解,知識の想起,医学的推論が向上することを示す。
論文 参考訳(メタデータ) (2022-12-26T14:28:24Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。