Prediction of Geoeffective CMEs Using SOHO Images and Deep Learning
- URL: http://arxiv.org/abs/2501.01011v1
- Date: Thu, 02 Jan 2025 02:24:37 GMT
- Title: Prediction of Geoeffective CMEs Using SOHO Images and Deep Learning
- Authors: Khalid A. Alobaid, Jason T. L. Wang, Haimin Wang, Ju Jing, Yasser Abduallah, Zhenduo Wang, Hameedullah Farooki, Huseyin Cavus, Vasyl Yurchyshyn,
- Abstract summary: Deep-learning framework designed to predict, deterministically or probabilistically, whether a CME event that arrives at Earth will cause a geomagnetic storm.
GeoCME is trained on observations from the instruments including LASCO C2, EIT and MDI on board the Solar and Heliospheric Observatory.
Using ensemble and transfer learning techniques, GeoCME is capable of extracting features hidden in the SOHO observations.
- Score: 0.7545833157486898
- License:
- Abstract: The application of machine learning to the study of coronal mass ejections (CMEs) and their impacts on Earth has seen significant growth recently. Understanding and forecasting CME geoeffectiveness is crucial for protecting infrastructure in space and ensuring the resilience of technological systems on Earth. Here we present GeoCME, a deep-learning framework designed to predict, deterministically or probabilistically, whether a CME event that arrives at Earth will cause a geomagnetic storm. A geomagnetic storm is defined as a disturbance of the Earth's magnetosphere during which the minimum Dst index value is less than -50 nT. GeoCME is trained on observations from the instruments including LASCO C2, EIT and MDI on board the Solar and Heliospheric Observatory (SOHO), focusing on a dataset that includes 136 halo/partial halo CMEs in Solar Cycle 23. Using ensemble and transfer learning techniques, GeoCME is capable of extracting features hidden in the SOHO observations and making predictions based on the learned features. Our experimental results demonstrate the good performance of GeoCME, achieving a Matthew's correlation coefficient of 0.807 and a true skill statistics score of 0.714 when the tool is used as a deterministic prediction model. When the tool is used as a probabilistic forecasting model, it achieves a Brier score of 0.094 and a Brier skill score of 0.493. These results are promising, showing that the proposed GeoCME can help enhance our understanding of CME-triggered solar-terrestrial interactions.
Related papers
- Machine Learning for Methane Detection and Quantification from Space -- A survey [49.7996292123687]
Methane (CH_4) is a potent anthropogenic greenhouse gas, contributing 86 times more to global warming than Carbon Dioxide (CO_2) over 20 years.
This work expands existing information on operational methane point source detection sensors in the Short-Wave Infrared (SWIR) bands.
It reviews the state-of-the-art for traditional as well as Machine Learning (ML) approaches.
arXiv Detail & Related papers (2024-08-27T15:03:20Z) - A Bionic Data-driven Approach for Long-distance Underwater Navigation with Anomaly Resistance [59.21686775951903]
Various animals exhibit accurate navigation using environment cues.
Inspired by animal navigation, this work proposes a bionic and data-driven approach for long-distance underwater navigation.
The proposed approach uses measured geomagnetic data for the navigation, and requires no GPS systems or geographical maps.
arXiv Detail & Related papers (2024-02-06T13:20:56Z) - Estimating Coronal Mass Ejection Mass and Kinetic Energy by Fusion of
Multiple Deep-learning Models [1.2126495348848583]
We propose a new method, called DeepCME, to estimate two properties of Coronal mass ejections (CMEs)
DeepCME is a fusion of three deep learning models, including ResNet, InceptionNet, and InceptionResNet.
To our knowledge, this is the first time that deep learning has been used for CME mass and kinetic energy estimations.
arXiv Detail & Related papers (2023-12-04T07:25:55Z) - GeoLLM: Extracting Geospatial Knowledge from Large Language Models [49.20315582673223]
We present GeoLLM, a novel method that can effectively extract geospatial knowledge from large language models.
We demonstrate the utility of our approach across multiple tasks of central interest to the international community, including the measurement of population density and economic livelihoods.
Our experiments reveal that LLMs are remarkably sample-efficient, rich in geospatial information, and robust across the globe.
arXiv Detail & Related papers (2023-10-10T00:03:23Z) - Physics-driven machine learning for the prediction of coronal mass
ejections' travel times [46.58747894238344]
Coronal Mass Ejections (CMEs) correspond to dramatic expulsions of plasma and magnetic field from the solar corona into the heliosphere.
CMEs are correlated to geomagnetic storms and may induce the generation of Solar Energetic Particles streams.
The present paper introduces a physics-driven artificial intelligence approach to the prediction of CMEs travel time.
arXiv Detail & Related papers (2023-05-17T08:53:29Z) - Ensemble Learning for CME Arrival Time Prediction [2.055949720959582]
An Earth-directed coronal mass ejection (CME) can cause serious consequences to the human system.
We propose an ensemble learning approach, named CMETNet, for predicting the arrival time of CMEs from the Sun to the Earth.
arXiv Detail & Related papers (2023-04-29T13:35:43Z) - Predicting the Geoeffectiveness of CMEs Using Machine Learning [0.0]
This work focuses on experimenting with different machine learning methods trained on white-light coronagraph datasets.
We develop binary classification models using logistic regression, K-Nearest Neighbors, Support Vector Machines, feed forward artificial neural networks, as well as ensemble models.
We discuss the main challenges of this task, namely the extreme imbalance between the number of geoeffective and ineffective events in our dataset.
arXiv Detail & Related papers (2022-06-23T03:56:22Z) - Deep Learning Models of the Discrete Component of the Galactic
Interstellar Gamma-Ray Emission [61.26321023273399]
A significant point-like component from the small scale (or discrete) structure in the H2 interstellar gas might be present in the Fermi-LAT data.
We show that deep learning may be effectively employed to model the gamma-ray emission traced by these rare H2 proxies within statistical significance in data-rich regions.
arXiv Detail & Related papers (2022-06-06T18:00:07Z) - Predicting Solar Energetic Particles Using SDO/HMI Vector Magnetic Data
Products and a Bidirectional LSTM Network [6.759687230043489]
Solar energetic particles (SEPs) are an essential source of space radiation, which are hazards for humans in space, spacecraft, and technology in general.
We propose a deep learning method to predict if an active region (AR) would produce an SEP event given that (i) the AR will produce an M- or X-class flare and a coronal mass ejection associated with the flare, or (ii) the AR will produce an M- or X-class flare regardless of whether or not the flare is associated with a CME.
arXiv Detail & Related papers (2022-03-27T21:06:08Z) - Deep Learning Based Cloud Cover Parameterization for ICON [55.49957005291674]
We train NN based cloud cover parameterizations with coarse-grained data based on realistic regional and global ICON simulations.
Globally trained NNs can reproduce sub-grid scale cloud cover of the regional simulation.
We identify an overemphasis on specific humidity and cloud ice as the reason why our column-based NN cannot perfectly generalize from the global to the regional coarse-grained data.
arXiv Detail & Related papers (2021-12-21T16:10:45Z) - Predicting Coronal Mass Ejections Using SDO/HMI Vector Magnetic Data
Products and Recurrent Neural Networks [8.269784943760882]
We present two recurrent neural networks (RNNs) for predicting whether an active region (AR) that produces an M- or X-class flare will also produce a coronal mass ejection (CME)
We model data samples in an AR as time series and use the RNNs to capture temporal information of the data samples.
To our knowledge this is the first time that RNNs have been used for CME prediction.
arXiv Detail & Related papers (2020-02-22T11:26:47Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.