論文の概要: Towards Adversarially Robust Deep Metric Learning
- arxiv url: http://arxiv.org/abs/2501.01025v2
- Date: Sun, 12 Jan 2025 04:43:46 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-01-14 14:27:57.400622
- Title: Towards Adversarially Robust Deep Metric Learning
- Title(参考訳): 逆ロバストな深層学習を目指して
- Authors: Xiaopeng Ke,
- Abstract要約: ディープニューラルネットワークは敵の攻撃を受けやすいため、敵の例によって簡単に騙される可能性がある。
既存の作業は、DMLモデルの堅牢性を徹底的に検査することができない。
我々は,アンサンブル学習と対人訓練を利用する新しい防衛法である「アンサンブル・アディバーショナル・トレーニング(EAT)」を提案する。
- 参考スコア(独自算出の注目度): 0.8702432681310401
- License:
- Abstract: Deep Metric Learning (DML) has shown remarkable successes in many domains by taking advantage of powerful deep neural networks. Deep neural networks are prone to adversarial attacks and could be easily fooled by adversarial examples. The current progress on this robustness issue is mainly about deep classification models but pays little attention to DML models. Existing works fail to thoroughly inspect the robustness of DML and neglect an important DML scenario, the clustering-based inference. In this work, we first point out the robustness issue of DML models in clustering-based inference scenarios. We find that, for the clustering-based inference, existing defenses designed DML are unable to be reused and the adaptions of defenses designed for deep classification models cannot achieve satisfactory robustness performance. To alleviate the hazard of adversarial examples, we propose a new defense, the Ensemble Adversarial Training (EAT), which exploits ensemble learning and adversarial training. EAT promotes the diversity of the ensemble, encouraging each model in the ensemble to have different robustness features, and employs a self-transferring mechanism to make full use of the robustness statistics of the whole ensemble in the update of every single model. We evaluate the EAT method on three widely-used datasets with two popular model architectures. The results show that the proposed EAT method greatly outperforms the adaptions of defenses designed for deep classification models.
- Abstract(参考訳): ディープメトリックラーニング(DML)は、強力なディープニューラルネットワークを活用することで、多くの領域で顕著な成功を収めている。
ディープニューラルネットワークは敵の攻撃を受けやすいため、敵の例によって簡単に騙される可能性がある。
この堅牢性に関する現在の進歩は、主に深い分類モデルに関するものだが、DMLモデルにはほとんど注意を払わない。
既存の作業は、DMLの堅牢性を徹底的に検査することができず、クラスタリングベースの推論である重要なDMLシナリオを無視します。
本稿では,クラスタリングに基づく推論シナリオにおけるDMLモデルのロバスト性について述べる。
クラスタリングに基づく推論では、既存のDMLの設計したディフェンスは再利用できず、深い分類モデルのために設計されたディフェンスの適応は満足のいくロバスト性性能を達成できないことがわかった。
本研究は,敵対的事例の危険性を軽減するため,アンサンブル学習と敵的訓練を活用した新たな防衛「アンサンブル・アドバイサル・トレーニング(EAT)」を提案する。
EATはアンサンブルの多様性を促進し、アンサンブルの各モデルに異なるロバスト性特徴を持つことを奨励し、すべてのモデルの更新においてアンサンブル全体のロバスト性統計をフル活用するために自己伝達機構を使用する。
2つの一般的なモデルアーキテクチャを持つ3つの広く使われているデータセットに対して、EAT法の評価を行った。
提案手法は, 深層分類モデルに設計したディフェンスの適応性を大幅に向上することを示す。
関連論文リスト
- A Robust Adversarial Ensemble with Causal (Feature Interaction) Interpretations for Image Classification [9.945272787814941]
本稿では,識別的特徴と生成的モデルを組み合わせた深層アンサンブルモデルを提案する。
提案手法は,特徴抽出のためのボトムレベル事前学習型識別ネットワークと,逆入力分布をモデル化したトップレベル生成型分類ネットワークを統合する。
論文 参考訳(メタデータ) (2024-12-28T05:06:20Z) - MOREL: Enhancing Adversarial Robustness through Multi-Objective Representation Learning [1.534667887016089]
ディープニューラルネットワーク(DNN)は、わずかに敵対的な摂動に対して脆弱である。
トレーニング中の強力な特徴表現学習は、元のモデルの堅牢性を大幅に向上させることができることを示す。
本稿では,多目的特徴表現学習手法であるMORELを提案する。
論文 参考訳(メタデータ) (2024-10-02T16:05:03Z) - Order of Magnitude Speedups for LLM Membership Inference [5.124111136127848]
大規模言語モデル(LLM)は、コンピューティングを広く革新させるという約束を持っているが、その複雑さと広範なトレーニングデータもまた、プライバシの脆弱性を露呈している。
LLMに関連する最も単純なプライバシーリスクの1つは、メンバーシップ推論攻撃(MIA)に対する感受性である。
文書がモデルのトレーニングセットに属しているか否かを判断するために,小さな量子レグレッションモデルのアンサンブルを利用する低コストMIAを提案する。
論文 参考訳(メタデータ) (2024-09-22T16:18:14Z) - Efficient Adversarial Training in LLMs with Continuous Attacks [99.5882845458567]
大規模言語モデル(LLM)は、安全ガードレールをバイパスできる敵攻撃に対して脆弱である。
本稿では,2つの損失からなる高速対向訓練アルゴリズム(C-AdvUL)を提案する。
C-AdvIPOは、対向的に堅牢なアライメントのためのユーティリティデータを必要としない、対向型のIPOである。
論文 参考訳(メタデータ) (2024-05-24T14:20:09Z) - Effective Backdoor Mitigation in Vision-Language Models Depends on the Pre-training Objective [71.39995120597999]
現代の機械学習モデルは、敵の攻撃やバックドア攻撃に弱い。
このようなリスクは、マルチモーダルモデルをトレーニングするための大規模なインターネットソースデータセット収集の一般的なプラクティスによって高められている。
CleanCLIPは、マルチモーダルモデルにおけるバックドア効果を軽減するための最先端のアプローチである。
論文 参考訳(メタデータ) (2023-11-25T06:55:13Z) - Task-Distributionally Robust Data-Free Meta-Learning [99.56612787882334]
Data-Free Meta-Learning (DFML)は、複数の事前学習モデルを活用することで、独自のトレーニングデータを必要とせずに、新しいタスクを効率的に学習することを目的としている。
TDS(Task-Distribution Shift)とTDC(Task-Distribution Corruption)の2つの大きな課題を初めて明らかにした。
論文 参考訳(メタデータ) (2023-11-23T15:46:54Z) - TWINS: A Fine-Tuning Framework for Improved Transferability of
Adversarial Robustness and Generalization [89.54947228958494]
本稿では,様々な分類タスクにおいて,逆向きに事前訓練されたモデルの微調整に焦点を当てる。
本稿では,TWINS(Two-WIng NormliSation)ファインチューニングフレームワークを提案する。
TWINSは、一般化とロバスト性の両方の観点から、幅広い画像分類データセットに有効であることが示されている。
論文 参考訳(メタデータ) (2023-03-20T14:12:55Z) - Latent Boundary-guided Adversarial Training [61.43040235982727]
モデルトレーニングに敵の例を注入する最も効果的な戦略は、敵のトレーニングであることが証明されている。
本稿では, LAtent bounDary-guided aDvErsarial tRaining という新たな逆トレーニングフレームワークを提案する。
論文 参考訳(メタデータ) (2022-06-08T07:40:55Z) - A Deep Marginal-Contrastive Defense against Adversarial Attacks on 1D
Models [3.9962751777898955]
ディープラーニングアルゴリズムは最近、脆弱性のために攻撃者がターゲットとしている。
非連続的深層モデルは、いまだに敵対的な攻撃に対して頑健ではない。
本稿では,特徴を特定のマージン下に置くことによって予測を容易にする新しい目的/損失関数を提案する。
論文 参考訳(メタデータ) (2020-12-08T20:51:43Z) - DVERGE: Diversifying Vulnerabilities for Enhanced Robust Generation of
Ensembles [20.46399318111058]
敵攻撃は、小さな摂動でCNNモデルを誤解させる可能性があるため、同じデータセットでトレーニングされた異なるモデル間で効果的に転送することができる。
非破壊的特徴を蒸留することにより,各サブモデルの逆脆弱性を分離するDVERGEを提案する。
新たな多様性基準とトレーニング手順により、DVERGEは転送攻撃に対して高い堅牢性を達成することができる。
論文 参考訳(メタデータ) (2020-09-30T14:57:35Z) - Adversarial Distributional Training for Robust Deep Learning [53.300984501078126]
逆行訓練(AT)は、逆行例によるトレーニングデータを増やすことにより、モデルロバスト性を改善する最も効果的な手法の一つである。
既存のAT手法の多くは、敵の例を作らせるために特定の攻撃を採用しており、他の目に見えない攻撃に対する信頼性の低い堅牢性につながっている。
本稿では,ロバストモデル学習のための新しいフレームワークであるADTを紹介する。
論文 参考訳(メタデータ) (2020-02-14T12:36:59Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。