論文の概要: MOREL: Enhancing Adversarial Robustness through Multi-Objective Representation Learning
- arxiv url: http://arxiv.org/abs/2410.01697v3
- Date: Fri, 13 Dec 2024 16:55:33 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-12-16 15:00:53.281707
- Title: MOREL: Enhancing Adversarial Robustness through Multi-Objective Representation Learning
- Title(参考訳): MOREL:多目的表現学習による対人ロバスト性向上
- Authors: Sedjro Salomon Hotegni, Sebastian Peitz,
- Abstract要約: ディープニューラルネットワーク(DNN)は、わずかに敵対的な摂動に対して脆弱である。
トレーニング中の強力な特徴表現学習は、元のモデルの堅牢性を大幅に向上させることができることを示す。
本稿では,多目的特徴表現学習手法であるMORELを提案する。
- 参考スコア(独自算出の注目度): 1.534667887016089
- License:
- Abstract: Extensive research has shown that deep neural networks (DNNs) are vulnerable to slight adversarial perturbations$-$small changes to the input data that appear insignificant but cause the model to produce drastically different outputs. In addition to augmenting training data with adversarial examples generated from a specific attack method, most of the current defense strategies necessitate modifying the original model architecture components to improve robustness or performing test-time data purification to handle adversarial attacks. In this work, we demonstrate that strong feature representation learning during training can significantly enhance the original model's robustness. We propose MOREL, a multi-objective feature representation learning approach, encouraging classification models to produce similar features for inputs within the same class, despite perturbations. Our training method involves an embedding space where cosine similarity loss and multi-positive contrastive loss are used to align natural and adversarial features from the model encoder and ensure tight clustering. Concurrently, the classifier is motivated to achieve accurate predictions. Through extensive experiments, we demonstrate that our approach significantly enhances the robustness of DNNs against white-box and black-box adversarial attacks, outperforming other methods that similarly require no architectural changes or test-time data purification. Our code is available at https://github.com/salomonhotegni/MOREL
- Abstract(参考訳): 広範囲にわたる研究によると、ディープニューラルネットワーク(DNN)は、重要でないように見えるが、モデルが劇的に異なる出力を生成する原因となる入力データに対して、わずかに敵対的な摂動に対して、$-$小変更の脆弱性があることが示されている。
特定の攻撃方法から生成された敵の例によるトレーニングデータの増加に加えて、現在の防衛戦略の多くは、元のモデルアーキテクチャコンポーネントを変更して堅牢性を改善したり、敵の攻撃に対処するためのテスト時のデータ浄化を行う必要がある。
本研究では,学習中の強機能表現学習が,元のモデルの堅牢性を大幅に向上させることを示す。
本稿では,多目的特徴表現学習手法であるMORELを提案する。
本手法は,コサイン類似性損失と多陽性コントラスト損失を用いて,モデルエンコーダの自然な特徴と対角的特徴を整合させ,密集クラスタリングを確実にする埋め込み空間を含む。
同時に、分類器は正確な予測をするために動機付けされる。
大規模な実験を通じて、我々の手法は、ホワイトボックスやブラックボックスの敵攻撃に対するDNNの堅牢性を大幅に向上させ、同様にアーキテクチャの変更やテストタイムのデータ浄化を必要としない他の手法よりも優れていることを示した。
私たちのコードはhttps://github.com/salomonhotegni/MORELで利用可能です。
関連論文リスト
- Adversarial Robustification via Text-to-Image Diffusion Models [56.37291240867549]
アドリラルロバスト性は、ニューラルネットワークをエンコードする難しい性質として伝統的に信じられてきた。
データを使わずに敵の堅牢性を実現するために,スケーラブルでモデルに依存しないソリューションを開発した。
論文 参考訳(メタデータ) (2024-07-26T10:49:14Z) - Enhancing Multiple Reliability Measures via Nuisance-extended
Information Bottleneck [77.37409441129995]
トレーニングデータに制限がある現実的なシナリオでは、データ内の多くの予測信号は、データ取得のバイアスからより多く得る。
我々は,相互情報制約の下で,より広い範囲の摂動をカバーできる敵の脅威モデルを考える。
そこで本研究では,その目的を実現するためのオートエンコーダベーストレーニングと,提案したハイブリッド識別世代学習を促進するための実用的なエンコーダ設計を提案する。
論文 参考訳(メタデータ) (2023-03-24T16:03:21Z) - PointACL:Adversarial Contrastive Learning for Robust Point Clouds
Representation under Adversarial Attack [73.3371797787823]
逆比較学習(Adversarial contrastive learning, ACL)は、事前学習されたモデルの堅牢性を改善する効果的な方法と考えられている。
本稿では,自己指導型コントラスト学習フレームワークを逆向きに学習するために,ロバストな認識損失関数を提案する。
提案手法であるPointACLを,複数のデータセットを用いた3次元分類と3次元分割を含む下流タスクで検証する。
論文 参考訳(メタデータ) (2022-09-14T22:58:31Z) - Improving robustness of jet tagging algorithms with adversarial training [56.79800815519762]
本研究では,フレーバータグ付けアルゴリズムの脆弱性について,敵攻撃による検証を行った。
シミュレーション攻撃の影響を緩和する対人訓練戦略を提案する。
論文 参考訳(メタデータ) (2022-03-25T19:57:19Z) - DVERGE: Diversifying Vulnerabilities for Enhanced Robust Generation of
Ensembles [20.46399318111058]
敵攻撃は、小さな摂動でCNNモデルを誤解させる可能性があるため、同じデータセットでトレーニングされた異なるモデル間で効果的に転送することができる。
非破壊的特徴を蒸留することにより,各サブモデルの逆脆弱性を分離するDVERGEを提案する。
新たな多様性基準とトレーニング手順により、DVERGEは転送攻撃に対して高い堅牢性を達成することができる。
論文 参考訳(メタデータ) (2020-09-30T14:57:35Z) - TREND: Transferability based Robust ENsemble Design [6.663641564969944]
本稿では, ネットワークアーキテクチャ, 入力, 重量, アクティベーションの量子化が, 対向サンプルの転送性に及ぼす影響について検討する。
本研究では,ソースとターゲット間の入力量子化によってトランスファービリティが著しく阻害されていることを示す。
我々は、これに対抗するために、新しい最先端のアンサンブル攻撃を提案する。
論文 参考訳(メタデータ) (2020-08-04T13:38:14Z) - Stylized Adversarial Defense [105.88250594033053]
逆行訓練は摂動パターンを生成し、モデルを堅牢化するためのトレーニングセットにそれらを含む。
我々は、より強力な敵を作るために、機能空間から追加情報を活用することを提案する。
我々の対人訓練アプローチは、最先端の防御と比べて強い堅牢性を示している。
論文 参考訳(メタデータ) (2020-07-29T08:38:10Z) - Adversarial Self-Supervised Contrastive Learning [62.17538130778111]
既存の対数学習アプローチは、主にクラスラベルを使用して、誤った予測につながる対数サンプルを生成する。
本稿では,未ラベルデータに対する新たな逆攻撃を提案する。これにより,モデルが摂動データサンプルのインスタンスレベルのアイデンティティを混乱させる。
ラベル付きデータなしで頑健なニューラルネットワークを逆さまにトレーニングするための,自己教師付きコントラスト学習フレームワークを提案する。
論文 参考訳(メタデータ) (2020-06-13T08:24:33Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。